Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

1. There are 24 (4!) different orders of 1, 2, 3, 4. How many orders can produce the same shape as the 2, 1, 4,

The shape of binary search tree depends on the order of the input. For example, there are 3! = 6 different 


1. There are 24 (4!) different orders of 1, 2, 3, 4. How many orders can produce the same shape as the 2, 1, 4, 3 ?
 

The shape of binary search tree depends on the order of the input. For example, there are 3! = 6 different orders of 1, 2, 3, which create 5 different shapes: If the input order is 1, 2, 3, the binary search tree is in Fig. 4 (a). If the input order is 1, 3, 2, the binary search tree is in Fig. 4 (b). If the input order is 2, 1, 3, the binary search tree is in Fig. 4 (c). If the input order is 2, 3, 1, the binary search tree is in Fig. 4 (c). If the input order is 3, 1, 2, the binary search tree is in Fig. 4 (d). If the input order is 3, 2, 1, the binary search tree is in Fig. 4 (e). 1 2 3 1 2 3 1 2 3 1 2 3 1 2 (a) (b) (c) (d) (e) Figure 4: Binary search trees constructed from different input order of 1, 2, 3. 3

Step by Step Solution

3.58 Rating (148 Votes )

There are 3 Steps involved in it

Step: 1

Answer Only 2 orders can produce the same as the 2 1 4 3 Explanation Here the ... blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

C++ Primer Plus

Authors: Stephen Prata

6th Edition

978-0321776402, 0321776402

More Books

Students also viewed these Algorithms questions

Question

Why is it important to have a dream? (p. 49)

Answered: 1 week ago