Answered step by step
Verified Expert Solution
Question
1 Approved Answer
4.1-4.* Consider the linear programming model (given in the back of the book) that was formulated for Prob. 3.2-3 (c) Use the solution concepts of
4.1-4.* Consider the linear programming model (given in the back of the book) that was formulated for Prob. 3.2-3
(c) Use the solution concepts of the simplex method given in Sec. 4.1 to identify which sequence of CPF solutions might be examined by the simplex method to reach an optimal solution. (Hint: There are two alternative sequences to be identified for this particular model.)
4.4-1. Repeat Prob. 4.1-4, using the tabular form of the simplex method.
3.2-3. * This is your lucky day. You have just won a $20,000 prize. You are setting aside $8,000 for taxes and partying expenses, but you have decided to invest the other $12,000. Upon hearing this news, two different friends have offered you an opportunity to become a partner in two different entrepreneurial ventures, one planned by each friend. In both cases, this investment would involve expending some of your time next summer as well as putting up cash. Becoming a full partner in the first friend's venture would require an investment of $10,000 and 400 hours, and your estimated profit (ignoring the value of your time) would be $9,000. The corresponding figures for the second friend's venture are $8,000 and 500 hours, with an estimated profit to you of $9,000. However, both friends are flexible and would allow you to come in at any fraction of a full partnership you would like. If you choose a fraction of a full partnership, all the above figures given for a full partnership (money investment, time investment, and your profit) would be multiplied by this same fraction. Because you were looking for an interesting summer job anyway (maximum of 600 hours), you have decided to participate in one or both friends' ventures in whichever combination would maximize your total estimated profit. You now need to solve the problem of finding the best combination. 3.2-3. * This is your lucky day. You have just won a $20,000 prize. You are setting aside $8,000 for taxes and partying expenses, but you have decided to invest the other $12,000. Upon hearing this news, two different friends have offered you an opportunity to become a partner in two different entrepreneurial ventures, one planned by each friend. In both cases, this investment would involve expending some of your time next summer as well as putting up cash. Becoming a full partner in the first friend's venture would require an investment of $10,000 and 400 hours, and your estimated profit (ignoring the value of your time) would be $9,000. The corresponding figures for the second friend's venture are $8,000 and 500 hours, with an estimated profit to you of $9,000. However, both friends are flexible and would allow you to come in at any fraction of a full partnership you would like. If you choose a fraction of a full partnership, all the above figures given for a full partnership (money investment, time investment, and your profit) would be multiplied by this same fraction. Because you were looking for an interesting summer job anyway (maximum of 600 hours), you have decided to participate in one or both friends' ventures in whichever combination would maximize your total estimated profit. You now need to solve the problem of finding the best combinationStep by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started