Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Apply the Box-Jenkins method (transform to stationarity if necessary and identify the time series model(e.g., ARMA(p,q))) for the luteinizing hormone data. Write down the algebraic

Apply the Box-Jenkins method (transform to stationarity if necessary and identify the time series model(e.g., ARMA(p,q))) for the luteinizing hormone data. Write down the algebraic expression of the fitted model. How is your "final" model compared with an AR(3) ? Use your final model to forecast the next 24 luteinizing hormone measurements

Code EXAMPLE FROM BOOK

######################################################## #3.5: ESTIMATION/FITTING ########################################################

library(astsa) #Example 3.27(text). AR(2): xt=1.5x(t-1)-.75x(t-2) +wt set.seed(8675309) ar2.sim=arima.sim(list(order = c(2,0,0), ar = c(1.5,-0.75)), n = 144) acf2(ar2.sim)

########### #estimation with goodness-of-fit diagnostics sarima(ar2.sim, 2,0,0) sarima(ar2.sim, 2,0,0, no.constant=TRUE) #Example 3.29 (text): MA(1), xt= wt + theta w(t-1) , theta=0.9. set.seed(2) ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 150)

########### #estimation with goodness-of-fit diagnostics sarima(lh, 1,0,0) sarima(lh, 1,0,0, no.constant=TRUE)

#MODEL: x[t] = 0.8413*w[t-1] +w[t]

#ARMA(1,1) , phi =0.83, theta= -0.43. set.seed(2786) arma11.sim = arima.sim(list(order = c(1,0,1), ar=0.83, ma = -0.43), n = 150) ########### #estimation with goodness-of-fit diagnostics sarima(arma11.sim,1,0,0) #MODEL: Subtract muhat from x[t] only like #(x[t]- (-0.2487) ) = 0.7958*(x[t-1]-(-0.2487)) - 0.2913*w[t-1] + w[t]

#But since the p-value is large for 'xmean' (meaning mu_xt = 0) then sarima(arma11.sim, 1,0,0, no.constant=TRUE)

#Hence, MODEL: x[t] = 0.7958*x[t-1] - 0.2913*w[t-1] + w[t]

############# #Recruitment data #estimation with goodness-of-fit diagnostics acf2(rec) sarima(rec, 13,0,0) #Hence, MODEL: x[t]-61.85 = 1.35*(x[t-1]-61.85) - 0.46*(x[t-2]-61.85) + w[t] #OR sarima(rec, 13,0,0, fixed=c(NA,NA,0,0,0,0,0,0,0,0,0,0,NA, NA) )

#OR sarima(rec, 13,0,0, fixed=c(NA,NA,0,NA,NA,0,0,0,0,0,0,0,NA, NA) )

#auto.arima auto.arima(rec) sarima(rec,1,1,0,0,0,2,12, no.constant=TRUE)

#Monthly lung disease deaths for females (fdeaths) #auto.arima acf2(fdeaths) sarima(fdeaths, 4,0,0 ) #OR sarima(rec, 4,0,0, fixed=c(NA,0,0,NA, NA) )

auto.arima(fdeaths) sarima(fdeaths,0,0,0,2,1,0,12, no.constant=FALSE)

########################################### #Section 3.4: FORECASTING # ###########################################

#Global warming data: temp deviations (1880-2015) library(astsa) data(globtemp) plot(globtemp) str(globtemp) time=time(globtemp) time2=time^2 time(globtemp) dat=cbind(globtemp,time,time2) mod1=lm(globtemp~I(time)+ I(time2), dat) mod1 #plot fit plot(time,globtemp, xlim=c(1880,2015), ylim=c(-0.5, 1),frame.plot=FALSE) lines( 2.844e+02 -2.992e-01*time +7.860e-05*time2, lwd=3, col="red")

#residuals qqnorm(resid(mod1),frame.plot=FALSE) qqline(resid(mod1))

#prediction for 2050 predict(mod1, data.frame(time=2050, time2=2050^2 ) , interval = "conf",level=0.95)

#Recruitment data library(astsa) sarima.for(rec,24,2,0,0) #with +/- 1,2*SE (prediction error bounds)

#OR library(astsa) sarima.for(fdeaths,24,0,0,0,2,1,0,12) #with +/- 1,2*SE (prediction error bounds)

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Applied Calculus

Authors: Stefan Waner, Steven Costenoble

7th Edition

1337514306, 9781337514309

More Books

Students also viewed these Mathematics questions

Question

Use a three-step process to develop effective business messages.

Answered: 1 week ago