Answered step by step
Verified Expert Solution
Link Copied!

Question

1 Approved Answer

Given the code for managing AVL trees is available in the program named avlTree.c and the program builds its tree using programmed inputs in the

Given the code for managing AVL trees is available in the program named avlTree.c and the program builds its tree using programmed inputs in the main function the objective of this lab problem is to provide AVL tree support for a different input data type - floating point numbers rather than the integer support in the existing code. The updated avlTree.c should be named AVLsort.c. The program should be able to read the unsorted data from STDIN and output the sorted data to STDOUT.

/* Recap left & right rotations (simple case)

T1, T2 and T3 are subtrees of the tree rooted with y

(on left side)

or x (on right side)

y x

/ \ Right Rotation / \

x T3 > T1 y

/ \ < - - - - - - - / \

T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order

keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

*/

#include

#include

/*****

Modifying the data stored in the AVL tree?

1. Start with the structure shown below.

2. Sort out the data type and any additional data that should be there.

3. Maybe even add a struct to support the requirements.

a. All data types can be put in the struct

BUT

b. Make sure that there is a valid data type that can be

arithmetically

compared so as to maintain the integrity of the AVL tree.

4. Make sure to check all the locations that manage the "key".

*****/

// An AVL tree node

struct node

{

int key;

struct node *left;

struct node *right;

int height;

};

// A utility function to get maximum of two integers

int max(int a, int b);

// A utility function to get height of the tree

int height(struct node *N)

{

if (N == NULL)

return 0;

return N->height;

}

// A utility function to get maximum of two integers

int max(int a, int b)

{

return (a > b)? a : b;

}

/* Helper function that allocates a new node with the given key and

NULL left and right pointers. */

struct node* newNode(int key)

{

struct node* node = (struct node*)

malloc(sizeof(struct node));

node->key = key;

node->left = NULL;

node->right = NULL;

node->height = 1; // new node is initially added at leaf

return(node);

}

// A utility function to right rotate subtree rooted with y

// See the diagram given above.

struct node *rightRotate(struct node *y)

{

struct node *x = y->left;

struct node *T2 = x->right;

// Perform rotation

x->right = y;

y->left = T2;

// Update heights

y->height = max(height(y->left), height(y->right))+1;

x->height = max(height(x->left), height(x->right))+1;

// Return new root

return x;

}

// A utility function to left rotate subtree rooted with x

// See the diagram given above.

struct node *leftRotate(struct node *x)

{

struct node *y = x->right;

struct node *T2 = y->left;

// Perform rotation

y->left = x;

x->right = T2;

// Update heights

x->height = max(height(x->left), height(x->right))+1;

y->height = max(height(y->left), height(y->right))+1;

// Return new root

return y;

}

/*

* RECAP Balance is based on Height

* Hn = Hl - Hr

* so

* positive => LEFT HEAVY

* negative => RIGHT HEAVY

*/

// Get Balance factor of node N

int getBalance(struct node *N)

{

if (N == NULL)

return 0;

return height(N->left) - height(N->right);

}

struct node* insert(struct node* node, int key)

{

/* 1. Perform the normal BST insertion */

if (node == NULL)

return(newNode(key));

if (key < node->key)

node->left = insert(node->left, key);

else

node->right = insert(node->right, key);

/* 2. Update height of this ancestor node */

node->height = max(height(node->left), height(node->right)) + 1;

/* 3. Get the balance factor of this ancestor node to check whether

this node became unbalanced */

int balance = getBalance(node);

// If this node becomes UNBALANCED, then there are 4 cases

/* CASE # 1 => LEFT-LEFT aka left?

T1, T2, T3 and T4 are subtrees.

z y

/ \ / \

y T4 Right Rotate (z) x z

/ \ - - - - - - - - -> / \ / \

x T3 T1 T2 T3 T4

/ \

T1 T2

*/

// Left Left Case in code

if (balance > 1 && key < node->left->key)

return rightRotate(node);

/* Case #2 => RIGHT-RIGHT aka right?

z y

/ \ / \

T1 y Left Rotate(z) z x

/ \ - - - - - - - -> / \ / \

T2 x T1 T2 T3 T4

/ \

T3 T4

*/

// Right Right Case in code

if (balance < -1 && key > node->right->key)

return leftRotate(node);

/* CASE # 3 => LEFT-RIGHT aka left-right?

z z x

/ \ / \ / \

y T4 Left Rotate (y) x T4 Right Rotate(z) y z

/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

T1 x y T3 T1 T2 T3 T4

/ \ / \

T2 T3 T1 T2

*/

// Left Right Case in code

if (balance > 1 && key > node->left->key)

{

node->left = leftRotate(node->left);

return rightRotate(node);

}

/* CASE #4 = RIGHT-LEFT aka right-left?

z z x

/ \ / \ / \

T1 y Right Rotate (y) T1 x Left Rotate(z) z y

/ \ - - - - - - - - -> / \ - - - - - - - -> / \ /

\

x T4 T2 y T1 T2 T3

T4

/ \ / \

T2 T3 T3 T4

*/

// Right Left Case in code

if (balance < -1 && key < node->right->key)

{

node->right = rightRotate(node->right);

return leftRotate(node);

}

/* return the (unchanged) node pointer */

return node;

}

// A utility function to print preorder traversal of the tree.

// The function also prints height of every node

void preOrder(struct node *root)

{

if(root != NULL)

{

printf("%2d/%1d ", root->key, root->height);

preOrder(root->left);

preOrder(root->right);

}

}

/*

The main function below is the test harness for the AVL tree code above.

Any modifications to support alternative input modes, like STDIN, will

happen here.

*/

/* Driver program to test above functions*/

int main()

{

struct node *root = NULL;

/* Constructing tree given in the above figure */

root = insert(root, 10);

root = insert(root, 20);

root = insert(root, 30);

root = insert(root, 40);

root = insert(root, 50);

root = insert(root, 25);

/*

Double check height calculations during RR/LR/RRL/LRR

(See case below....)

*/

root = insert(root, 5);

root = insert(root, 4);

/* The constructed AVL Tree would be

30

/ \

20 40

/ \ \

5 25 50

/ \

4 10

*/

printf("Pre order traversal of the constructed AVL tree is ");

preOrder(root);

printf(" ");

return 0;

}

Step by Step Solution

There are 3 Steps involved in it

Step: 1

blur-text-image

Get Instant Access to Expert-Tailored Solutions

See step-by-step solutions with expert insights and AI powered tools for academic success

Step: 2

blur-text-image

Step: 3

blur-text-image

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

Databases And Information Systems 1 International Baltic Conference Dbandis 2020 Tallinn Estonia June 19 2020 Proceedings

Authors: Tarmo Robal ,Hele-Mai Haav ,Jaan Penjam ,Raimundas Matulevicius

1st Edition

303057671X, 978-3030576714

More Books

Students also viewed these Databases questions