Show that for an ideal Fermi gas [frac{1}{z}left(frac{partial z}{partial T} ight)_{P}=-frac{5}{2 T} frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}]
Question:
Show that for an ideal Fermi gas
\[\frac{1}{z}\left(\frac{\partial z}{\partial T}\right)_{P}=-\frac{5}{2 T} \frac{f_{5 / 2}(z)}{f_{3 / 2}(z)}\]
compare with equation (8.1.9). Hence show that
\[\gamma \equiv \frac{C_{P}}{C_{V}}=\frac{(\partial z / \partial T)_{P}}{(\partial z / \partial T)_{v}}=\frac{5}{3} \frac{f_{5 / 2}(z) f_{1 / 2}(z)}{\left\{f_{3 / 2}(z)\right\}^{2}} .\]
Check that at low temperatures
\[\gamma \simeq 1+\frac{\pi^{2}}{3}\left(\frac{k T}{\varepsilon_{F}}\right)^{2}\]
Fantastic news! We've Found the answer you've been seeking!
Step by Step Answer:
Related Book For
Question Posted: