Question: Let $M$ be the four-dimensional Minkowski space, with coordinates $x^{0}, x^{1}, x^{2}$, and $x^{3}$. Let us define a linear operator $*: Omega^{r}(M) ightarrow$ $Omega^{4-r}(M)$,
Let $M$ be the four-dimensional Minkowski space, with coordinates $x^{0}, x^{1}, x^{2}$, and $x^{3}$. Let us define a linear operator $*: \Omega^{r}(M) \rightarrow$ $\Omega^{4-r}(M)$, such that
$$\begin{array}{ll}
r=0: & * 1=-d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3} \\
r=1: & * d x^{i}=-d x^{j} \wedge d x^{k} \wedge d x^{0}, \quad * d x^{0}=-d x^{1} \wedge d x^{2} \wedge d x^{3} \\
r=2: & *\left(d x^{i} \wedge d x^{j}\right)=d x^{k} \wedge d x^{0}, \quad *\left(d x^{i} \wedge d x^{0}\right)=-d x^{j} \wedge d x^{k} \\
r=3: & *\left(d x^{1} \wedge d x^{2} \wedge d x^{3}\right)=-d x^{0}, \quad *\left(d x^{i} \wedge d x^{j} \wedge d x^{0}\right)=-d x^{k} \\
r=4: & *\left(d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}\right)=1 \end{array}$$
where $(i, j, k)$ is a symmetric permutation of $(1,2,3)$. The $*$ operator is called the Hodge star operator, mapping a differential form to its Hodge dual. We then define a one-form $A=A_{\mu} d x^{\mu}$, where $\left(A_{\mu}\right)_{\mu=0, \ldots, 3}=(\phi, A)$ is the electromagnetic potential. The electromagnetic field-strength tensor is then the two-form $F=\mathrm{d} A$, with the components $$F_{\mu v}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0 \end{array}\right),$$
where $$\vec{E}=-abla \phi-\frac{\partial}{\partial x^{0}} \vec{A}, \quad \vec{B}=abla \times \vec{A}$$
Finally, we define a one-form $J=J_{\mu} d x^{\mu}=ho d x^{0}+j_{k} d x^{k}$, which corresponds to the electromagnetic current.
(i) Show that the identity $d F=d(d A)=0$ corresponds to the Maxwell's equations $$abla \cdot \vec{B}=0, \quad \frac{\partial \vec{B}}{\partial x^{0}}+abla \times \vec{E}=0$$
(ii) Show that the equation $d * F=* J$ corresponds to the Maxwell equations $$abla \cdot \vec{E}=ho, \quad abla \times \vec{B}-\frac{\partial \vec{E}}{\partial x^{0}}=\vec{j}$$
(iii) Show that the identity $0=d(d * F)=d * J$ corresponds to the continuity equation of the current $$\partial_{\mu} J^{\mu}=\frac{\partial ho}{\partial x^{0}}+abla \cdot \vec{j}=0$$
Step by Step Solution
There are 3 Steps involved in it
In order to solve this problem First we need to connect the differential form expressions with the classical Maxwells equations in the context of Mink... View full answer
Get step-by-step solutions from verified subject matter experts
