While interacting with molecules (mainly water) in the tumor tissue, each Compton electron or photoelectron causes a
Question:
While interacting with molecules (mainly water) in the tumor tissue, each Compton electron or photoelectron causes a series of ionizations, each of which takes about 40 eV. Estimate the maximum number of ionizations that one photon generated by this linear accelerator can produce in tissue.
(a) 100;
(b) 1000;
(c) 104;
(d) 105.
Malignant tumors are commonly treated with targeted x-ray radiation therapy. To generate these medical x rays, a linear accelerator directs a highenergy beam of electrons toward a metal target—typically tungsten. As they near the tungsten nuclei, the electrons are deflected and accelerated, emitting high-energy photons via bremsstrahlung. The resulting x rays are collimated into a beam that is directed at the tumor. The photons can deposit energy in the tumor through Compton and photoelectric interactions. A typical tumor has 108 cells/cm3, and in a full treatment, 4-MeV photons may produce a dose of 70 Gy in 35 fractional exposures on different days. The gray (Gy) is a measure of the absorbed energy dose of radiation per unit mass of tissue: 1 Gy = 1 J/kg.
Step by Step Answer:
University Physics with Modern Physics
ISBN: 978-0133977981
14th edition
Authors: Hugh D. Young, Roger A. Freedman