All Matches
Solution Library
Expert Answer
Textbooks
Search Textbook questions, tutors and Books
Oops, something went wrong!
Change your search query and then try again
Toggle navigation
FREE Trial
S
Books
FREE
Tutors
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Hire a Tutor
AI Study Help
New
Search
Search
Sign In
Register
study help
engineering
electronic devices and circuit theory
Questions and Answers of
Electronic Devices And Circuit Theory
For the network of Fig. 4.137, determine:a. IE.b. VC.c. VCE. 2.2 ΚΩ 9-8V lg. VCE + FIG. 4.137 Vc 1,8 ΚΩ 10 V
For the common-base network of Fig. 5.176 :a. Determine Zi, Zo, and AvNL.b. Sketch the two-port model of Fig. 5.63 with the parameters of part (a) in place.c. Determine AvL and Avs.d. Determine AvL
Determine Vo1 and Vo2 for the networks of Fig. 2.159 . +12 Vo Si (a) 4.7 ΚΩ GaAs Vo₂ -10 Vo FIG. 2.159 Problem 9. Ge Si K (b) 1.2 kQ ww + Vo₂ 3.3 ΚΩ
For the common-base network of Fig. 4.138Fig. 4.143 a. Using the information provided determines the value of RC .b. Find the currents IB and IE .c. Determine the voltages VBC and VCE . 9.1
For the network of Fig. 4.139, determine:Fig. 4.139 a. IB.b. IC.c. VE.d. VCE 510 ΚΩ 510 ΚΩ o+18 V 19.1 ΚΩ Ic ove + VCE β = 130 LOVE 17.5 ΚΩ 0-18 V
Given VC = 8 V for the network of Fig. 4.140, determine:Fig. 4.140a. IB.b. IC.c. B.d. VCE.Determine RC and RB for a fixed-bias configuration if VCC = 12 V, b = 80, and ICQ = 2.5 mA with VCEQ = 6
For the R–C-coupled amplifier of Fig. 4.141 determineFig. 4.141a. The voltages VB, VC and VE for each transistor.b. The currents IB, IC and IE for each transistor. 10 με 18 ΚΩ Κ Ως 4.7
For the cascode amplifier of Fig. 4.143 determineFig. 4.143a. The base and collector currents of each transistor.b. The voltages VB1, VB2, VE1, VC1, VE2, and VC2. V₁o- 8.2 ΚΩ C₁ HH 10
For the Darlington amplifier of Fig. 4.142 determineFig. 4.142 a. The level of bD.b. The base current of each transistor.c. The collector current of each transistor.d. The voltages VC1, VC2, VE1
For the feedback amplifier of Fig. 4.144 determineFig. 4.144a. The base and collector current of each transistor.b. The base, emitter, and collector voltages of each transistor. Vi o F 1.8
Calculate the mirrored current I in the circuit of Fig. 4.145.Fig. 4.145 Vio 1.8 ΜΩ Οι FIG. 4.144 12 V www Ως 220 Ω Η ονο βι = 80 βη = 160 +18 V 2 ΚΩ ΑΛΛΟ FIG. 4.145 β = 200
Calculate collector currents for Q1 and Q2 in Fig. 4.146.Fig. 4.146. ei 2 mA • 3 ΚΩ +12V β= 250 Q₂ FIG. 4.146 2.4 ΚΩ Q3
Calculate the current through the 2.2-k load in the circuit of Fig. 4.147.Fig. 4.147. +6V Rg m 100 ΚΩ Ο 28 V FIG. 4.147 2.2 ΚΩ β = 120 1.2 ΚΩ
Determine VC and IB for the network of Fig. 4.151 Calculate the current I in the circuit of Fig. 4.149.Fig. 4.149. 1.5 ΚΩ 5.1V FIG. 4.149 B = 200 1.2 ΚΩ -12 V
Determine VC, VCE, and IC for the network of Fig. 4.150.Fig. 4.150 -12V 8510 ΚΩ lc 3.3 k Mr Bul FIG. 4.150
For the network of Fig. 4.140, determine:Fig. 4.140 a. S(I CO).b. S(V BE).c. S (b), using T1 as the temperature at which the parameter values are specified and b(T2) as 25% more than b(T1).d.
If a transistor amplifier has more than one dc source, can the superposition theorem be applied to obtain the response of each dc source and algebraically add the results?Do you think of an analogy
For the Darlington network of Fig. 5.181:Fig. 5.181a. Determine the dc levels of VB1, VC1, VE2, VCB1, and VCE2.b. Find the currents IB1, IB2, and IE2.c. Calculate Zi and Zo.d. Determine the voltage
a. Sketch the basic construction of a p -channel depletion-type MOSFET.b. Apply the proper drain-to-source voltage and sketch the flow of electrons for V GS = 0 V.
a. Plot g m versus V GS for an n -channel JFET with IDSS = 12 mA and VP = -6 V.b. Plot g m versus I D for the same n -channel JFET as part (a).
Using PSpice Windows, determine the frequency response of Vo/Vi for the high-pass filter of Fig. 9.45 of R = 8.2 kΩ and C = 4.7 μF.
A 160-W silicon power transistor operated with a heat sink (θSA= 1.5C/W) has θ JC = 0.5C>W and mounting insulation of θCS = 0.8C/W. What maximum power can be handled by the transistor
For a reference voltage of 16 V, calculate the output voltage for the input of 11010 to the circuit of Problem 8.Problem 8Sketch a five-stage ladder network using 15-kΩ and 30-kΩ resistors.
For the collector-feedback configuration of Fig. 4.129, determine:a. IB.b. IC.c. VCFig. 4.129 270 ΚΩ W +16V 13.6 ΚΩ + Ic Vc β = 120 1.2 ΚΩ
For the emitter follower network of Fig. 4.135a. Find IB, I C , and IE .b. Determine VB , VC , and VE .c. Calculate V BC and VCE. Fig. 4.135 22 ΚΩ . V₁o-H 82 ΚΩ , 12V FIG.
For the network of Fig. 4.136 , determine:a. IB.b. IC.c. VCE.d. VC.Fig. 4.136 9.1 ΚΩ 9+16 V '12 ΚΩ le + να β = 80 15 ΚΩ 6-12V FIG. 4.136
Answer the following questions about the circuit of Fig. 4.159 :a. What happens to the voltage VC if the resistor R B is open?b. What should happen to V CE if b increases due to temperature?c.
a. Calculate the resistance associated with the JFET of Fig. 6.22 for V GS =0V from ID = 0 mA to 4 mA.b. Repeat part (a) for VGS = -0.5 V from I D = 0 to 3 mA.c. Assigning the label ro to the result
Determine V C and I B for the network of Fig. 4.151Fig. 4.151 -22 V 2.2 k2 -12 V 82 k2 Vc 3.3 k2 B = 220 '510 k2 16 k2 0.75 k2 VeE B = 100 FIG. 4.150 FIG. 4.151 Problem 54. Problem 55.
Determine I E and V C for the network of Fig. 4.152.Fig. 4.152 +8 V 3.3 k2 B = 110 3.9 k2 o-12 V Vc FIG. 4.152 Problem 56.
a. Using the characteristics of Fig. 3.23e , determine ton and toff at a current of 2 mA. Note the use of log scales and the possible need to refer to Section 9.2 .b. Repeat part (a) at a current of
The measurements of Fig. 4.155 all reveal that the network is not functioning correctly. List as many reasons as you can for the measurements obtained.Fig. 4.155 920 V 20 V 20 V 4.7 k2 4.7 k2 4.7
The measurements appearing in Fig. 4.156 reveal that the networks are not operating properly.Be specific in describing why the levels obtained reflect a problem with the expected network behavior. In
Answer the following questions about the circuit of Fig. 4.158 :a. What happens to the voltage V C if the transistor is replaced by one having a larger value of b?b. What happens to the voltage V CE
Perform a PSpice analysis of the network of Fig. 4.118. That is, determine IC , VCE , and IB .Fig. 4.118 16 V Ice 1.8 k2 510 kQ VCE, B=120 VE FIG. 4.118
Repeat Problem 71 using Multisim.the network of Fig. 4.129Fig. 4.129Problem 71Perform a PSpice analysis of the network of Fig. 4.118. That is, determine IC , VCE , and IB . +16 V 3.6 k2 270
Repeat Problem 74 using Multisim.Problem 74Repeat Problem 71 using Multisim.the network of Fig. 4.129Fig. 4.129Problem 71Perform a PSpice analysis of the network of Fig. 4.118. That is, determine IC
Repeat Problem 73 using Multisim.Problem 73Repeat Problem 71 for the network of Fig. 4.125.Fig. 4.125 16 V 3.9 ka 62 kfl Ve Ver A- 80 VE 9.1 ka 0.68 k2
Repeat Problem 71 using Multisim.Problem 71Repeat Problem 71 using Multisim.the network of Fig. 4.129Fig. 4.129 +16 V 3.6 k2 270 k2 Ve Ic IB B = 120 1.2 kQ FIG. 4.129
Given the common-base configuration of Fig. 5.150, sketch the ac equivalent using the notation for the transistor model appearing in Fig. 5.7.Fig. 5.150Fig. 5.7 R, RC Vec VLE
For the network of Fig. 5.151 :a. Determine Zi and Zo.b. Find A.c. Repeat parts (a) and (b) with ro = 20 k. 12 V 2.2 k2 220 k2 B = 60 ro = 40 k2 FIG. 5.151
For the network of Fig. 5.152, determine VCC for a voltage gain of Av = -160. 12 V Vcc 4.7 k2 2.2 k2 220 k2 1 MQ B= 90 B= 60 To=40 k2 FIG. 5.151 FIG. 5.152
For the network of Fig. 5.153 :a. Calculate IB , IC , and re .b. Determine Zi and Zo .c. Calculate Av .d. Determine the effect of ro = 30 k on Av .Fig. 5.153 12 V 5.6 k2 Z. B= 100 Sas= 25
For the network of Fig. 5.153, what value of R C will cut the voltage gain to half the value obtained in problem 13?problem 13For the network of Fig. 5.153 :a. Calculate IB , IC , and re
For the network of Fig. 5.157 :a. Determine re .b. Find the dc voltages VB , VCB , and VCE .c. Determine Z i and Z o .d. Calculate A v = Vo > Vi. V Z. B= 70 ro = 60 kn 24 V 3.3
Repeat Problem 19 with R E bypassed. Compare results.Problem 19For the network of Fig. 5.158 :a. Determine re.b. Find Zi and Zo.c. Calculate Av.d. Repeat parts (b) and (c) with ro = 20 k.Fig. 5.158
For the network of Fig. 5.159 , determine R E and RB if Av = -10 and re = 3.8 . Assume that Zb = bRE. 20 V 20 V 2.2 k2 8.2 k2 390 k2 RB B= 140 = 100 ko B= 120 Bos 10 μS V !! 1.2 k2 RE FIG.
For the network of Fig. 5.160 :a. Determine re.b. Find Zi and Av. 22 V 5.6 k2 330 k2 1, Cc B = 80 ro = 40 k2 V c Cc Z 1.2 k2 0.47 k2 CE FIG. 5.160
For the network of Fig. 5.161 :a. Determine r e .b. Calculate V B , V CE , and VCB .c. Determine Z i and Z o .d. Calculate A v =V o > V/i.e. Determine A i = I o > I/i. -o
For the network of Fig. 5.162 :a. Determine re and b re.b. Find Zi and Zo.c. Calculate A v. 16 V 270 k2 B= 110 ro= 50 k2 2.7 k2
For the network of Fig. 5.163 :a. Determine Z i and Z o.b. Find A v.c. Calculate Vo if Vi = 1 mV.Fig. 5.163 12 V B = 120 r, = 40 k2 Z 390 k2 5.6 k2 -8 V FIG. 5.163
For the common-base configuration of Fig. 5.165 :a. Determine re.b. Find Zi and Zo.c. Calculate Av.Fig. 5.165 +6 V -10 V 6.8 k2 4.7 k2 o V. a = 0.998 8os = 10 us FIG. 5.165
For the network of Fig. 5.166 , determine Av. 8 V 3.6 k2 +6 V -10 V B= 75 Sas =5 uS 6.8 k2 4.7 k2 3.9 k2 a = 0.998 Bos = 10 µS -5 V FIG. 5.165 FIG. 5.166
For the network of Fig. 5.175 :a. Determine AvNL, Zi, and Zo.b. Sketch the two-port model of Fig. 5.63 with the values determined in part (a).c. Determine AvL and Avs.d. Change Rs to 1 k and
Determine A v = Vo > Vs for the network of Fig. 5.181 if the source has an internal resistance of 1.2 kΩ and the applied load is 10 kΩ.Fig. 5.181 +16 V 2.4 MQ 0.1 uF V B1 = 50, B2 =
Repeat problem 54 if a 22-Ω resistor is added between VE2 and ground.problem 54For the feedback pair of Fig. 5.182 :a. Calculate the dc voltages VB1, VB2, VC1, VC2, VE1, and VE2.b.
Repeat problem 54 if a load resistance of 1.2 kΩis introduced.problem 54For the feedback pair of Fig. 5.182 :a. Calculate the dc voltages VB1, VB2, VC1, VC2, VE1, and VE2.b. Determine the dc
Given IE(dc) = 1.2 mA, β = 120 and ro= 40k, sketch the following:a. Common-emitter hybrid equivalent model.b. Common-emitter re equivalent model.c. Common-base hybrid equivalent model.d. Common-base
Given hie = 2.4 kΩ, hfe = 100, hre = 4 * 10-4, and hoe = 25 μS, sketch the following:a. Common-emitter hybrid equivalent model.b. Common-emitter re equivalent model.c. Common-base
Repeat Problem 63 for RL = 3.3 kΩ and the average value of hoe in Fig. 5.92.Fig. 5.92 Min. Max. Input impedance (dc 1 mA de, VcE = 10 V dc, f = 1 kHz) Voltage feedback ratio (lc = 1 mA de, VCE = 10
a. Sketch the Giacoletto (hybrid p) model for a common-emitter transistor if rb = 4 ,Cp = 5 pF, Cu = 1.5 pF, hoe = 18 mS, b = 120, and re = 14.b. If the applied load is 1.2 kΩ and the source
Using Fig. 5.124, determine the magnitude of the percentage change in hfe for an IC change from 0.2 mA to 1 mA using the equation | h(0.2 mA) – hjel(1 mA)| % change x 100% %3D h(0.2 mA)
a. If hre = 210-4 at IC = 1 mA on Fig. 5.124, determine the approximate value of hre at 0.1 mA.b. For the value of hre determined in part (a), can hre be ignored as a good approximation if Av =
Using Multisim, determine the voltage gaiUsing Multisim, determine the voltage gain for the network of Fig. 5.28 .n for the network of Fig. 5.28.Fig. 5.28 22 V 6.8 k2 56 k2 10 μF 10 µF B = 90 8.2
Using Multisim, determine the voltage gain for the network of Fig. 5.39Fig. 5.39 12 V RE 220 k2 10 µF Rge B = 100, r,= co 10 µF o V, RE 3.3 k2 FIG. 5.39
a. Draw the basic construction of a p -channel JFET.b. Apply the proper biasing between drain and source and sketch the depletion region for V GS = 0 V.
Using the characteristics of Fig. 6.11 , determine ID for the following levels of V GS (with VDS > VP ):a. V GS = 0 V.b. V GS = 1 V.c. V GS = 1.5 V.d. V GS = 1.8 V.e. V GS = 4 V.f. V GS =6
Given IDSS = 12 mA and 0 VP 0 = 6 V, sketch a probable distribution of characteristic curves for the JFET (similar to Fig. 6.11) , (mA) Locus of pinch-off values Ohmic Saturation Region Region
a. Determine V DS for V GS = 0 V and ID = 6 mA using the characteristics of Fig. 6.11 .Fig. 6.11b. Using the results of part (a), calculate the resistance of the JFET for the region ID = 0
Using the results of problem 2 plot the transfer characteristics of ID vs. VGS.problem 2 Using the characteristics of Fig. 6.11 , determine ID for the following levels of V GS (with VDS
a. Describe in your own words why IG is effectively 0A for a JFET transistor.b. Why is the input impedance to a JFET so high?c. Why is the terminology field-effect appropriate for this important
Given the characteristics of Fig. 6.54 :a. Sketch the transfer characteristics directly from the drain characteristics.b. Using Fig. 6.54 to establish the values of I DSS and V P , sketch the
In general, comment on the polarity of the various voltages and direction of the currents for an n -channel JFET versus a p-channel JFET.
Given IDSS = 9 mA and VP = -4 V, determine ID when:a. V GS= 0 V.b. V GS =-2 V.c. V GS =-4 V.d. V GS =-6 V.
For a particular JFET if ID = 4 mA when VGS 3V, determine VP if IDSS = 12 mA.
Define the region of operation for the 2N5457 JFET of Fig. 6.20 using the range of IDSS and VP provided. That is, sketch the transfer curve defined by the maximum IDSS and VP and the transfer
Given IDSS = 6 mA and VP = -4.5 V:a. Determine ID at VGS = -2 and -3.6 V.b. Determine VGS at ID = 3 and 5.5 mA.
For the 2N5457 JFET of Fig. 6.20, what is the power rating at a typical operating temperature of 45°C using the 5.0 mW/°C derating factor?Fig. 6.20 2NS457 MMBF5457 ABKLITE MANIMIM RATINCS Sel Dr Ss
Define the region of operation for the JFET of Fig. 6.54 if VDSmax = 30 V and PDmax = 100 mW.Fig. 6.54 D (mA) VGs=0 V 10 7 F-2 V 3 -3 V- -4 V 5 V A9- 5 10 15 20 25 Vps (V)
Using the characteristics of Fig. 6.22 , determine I D at VGS = -0.7 V and VDS = 10 V. Fig. 6.22 Vas =0V oss= 9 mA Vertical Sens. 1 mA per div. Vas =-0.5 V Нorizontal Sens. per div. Vas
Referring to Fig. 6.22, is the locus of pinch-off values defined by the region of VDS 6 0 VP 0 = 3 V?Fig. 6.22, Vas = 0 V oss = 9 mA Vertical Sens. 1 mA per div. Vas =-0.5 V Нorizontal Sens. per
Determine VP for the characteristics of Fig. 6.22 using IDSS and ID at some value of VGS. That is, simply substitute into Shockley’s equation and solve for VP. Compare the result to the assumed
Using IDSS = 9 mA and VP = -3 V for the characteristics of Fig. 6.22 , calculate I D at V GS = 1V using Shockley’s equation and compare to the level in Fig. 6.22.Fig. 6.22 Vas =0 V 2 9
Using an average value of 2.9 mA for the IDSS of the 2N3797 MOSFET of Fig. 6.31, determine the level of VGS that will result in a maximum drain current of 20 mA if VP = -5 V.Fig. 6.31
Explain in your own words why the application of a positive voltage to the gate of an n-channel depletion-type MOSFET will result in a drain current exceeding IDSS .
a. What is the significant difference between the construction of an enhancement-type MOSFET and a depletion-type MOSFET?b. Sketch a p -channel enhancement-type MOSFET with the proper biasing
a. Sketch the transfer and drain characteristics of an n -channel enhancement-type MOSFET if vT = 3.5 V and k = 0.4 10-3 A>V2.b. Repeat part (a) for the transfer characteristics if VT is
Given the transfer characteristics of Fig. 6.55, determine VT and k and write the general equation for I. to(mA) 20- 15- 10- 5- 5 10 Ves(V)
Given k = 0.4 × 10-3 A>V2 and ID(on) = 3 mA with VGS(on) = 4 V, determine V T.
The maximum drain current for the 2N4351 n -channel enhancement-type MOSFET is 30 mA. Determine VGS at this current level if k = 0.06 * 10-3 A>V2 and VT is the maximum value.
Sketch the transfer characteristics of a p -channel enhancement-type MOSFET if VT = -5 V and k = 0.45 × 10-3 A > V2.
Sketch the curve of ID = 0.5 × 10-3(V2 GS) and ID = 0.5 * 10-3(VGS - 4)2 for V GS from 0V to 10 V. Does VT = 4 V have a significant effect on the level of ID for this region?
a. Describe in your own words why the VMOS FET can withstand a higher current and power rating than devices constructed with standard techniques.b. Why do VMOS FETs have reduced channel resistance
Research CMOS logic at your local or college library, and describe the range of applications and basic advantages of the approach.
For the fixed-bias configuration of Fig. 7.75 :a. Sketch the transfer characteristics of the device.b. Superimpose the network equation on the same graph.c. Determine IDQ and VDSQ.d. Using
For the fixed-bias configuration of Fig. 7.76, determine:a. IDQ and VGSQ using a purely mathematical approach.b. Repeat part (a) using a graphical approach and compare results.c. Find VDS, VD, VG,
Determine VD and VGS for the fixed-bias configuration of Fig. 7.78 . 20 V 2,2 k2 VD Ipss = 5 mA Vp = -5 V 1 MN FIG. 7.78
Determine VD and VGS for the fixed-bias configuration of Fig. 7.79. 20 V 18 V 2 k2 2,2 k2 VD OVD Ipss = 5 mA Vp = -5 V Ipss Vp = -4 V = 8 mA 1 M2 2 ΜΩ 4 V FIG. 7.78 FIG. 7.79
For the self-bias configuration of Fig. 7.80 :a. Sketch the transfer curve for the device.b. Superimpose the network equation on the same graph.c. Determine IDQ and VGSQ.d. Calculate VDS, VD, VG, and
For the network of Fig. 7.81 , determine:a. VGSQ and IDQ.b. VDS, VD, VG, and VS. 12 V 2.2 ka oss = 6 mA. Vp =-6 V Vase 1 MO. 1.6 kn 3 V FIG. 7.81
Showing 1 - 100
of 363
1
2
3
4