All Matches
Solution Library
Expert Answer
Textbooks
Search Textbook questions, tutors and Books
Oops, something went wrong!
Change your search query and then try again
Toggle navigation
FREE Trial
S
Books
FREE
Tutors
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Hire a Tutor
AI Study Help
New
Search
Search
Sign In
Register
study help
business
statistics informed decisions using data
Questions and Answers of
Statistics Informed Decisions Using Data
Randomlygenerate10,000observationsfroma t distribution with df = 3 and constructa normal quantileplot(Exercise2.67).Howdoesthisplotrevealnon-normalityofthedataina waythatahistogramdoesnot?
The Substance data fileatthebook’swebsiteshowsacontingencytableformedfromasurvey that askedasampleofhighschoolstudentswhethertheyhaveeverusedalcohol,cigarettes, and
Inthe2018GeneralSocialSurvey,whenaskedwhethertheybelievedinlifeafterdeath,1017 of 1178femalessaid yes, and703of945malessaid yes. Construct95%confidenceintervals for
Usingthe Students data file,forthecorrespondingpopulation,constructa95%confidencein-terval(a) forthemeanweeklynumberofhoursspentwatchingTV;(b) tocomparefemalesand males
Sections 4.4.3 and 4.5.3 analyzed datafromastudyaboutanorexia.The Anorexia data file at thetextwebsitecontainsresultsforthecognitivebehavioralandfamilytherapiesandthe
The Income data fileatthebook’swebsiteshowsannualincomesinthousandsofdollarsfor subjectsinthreeracial-ethnicgroupsintheU.S.(a) Useagraphicsuchasaside-by-sideboxplot(Section 1.4.5)
TheobservationsonnumberofhoursofdailyTVwatchingforthe10subjectsinthe2018GSS who identifiedthemselvesasIslamicwere0,0,1,1,1,2,2,3,3,4.(a)
ArecentGeneralSocialSurveyaskedmalerespondentshowmanyfemalepartnerstheyhave had sexwithsincetheir18thbirthday.Forthe131malesbetweentheagesof23and29,the median = 6 andmode = 1
Astudyinvestigatesthedistributionofannualincomeforheadsofhouseholdslivinginpublic housing inChicago.Forarandomsampleofsize30,theannualincomes(inthousandsof dollars) areinthe Chicago data
ToestimatetheproportionoftrafficdeathsinCalifornialastyearthatwerealcoholrelated,de-termine thenecessarysamplesizefortheestimatetobeaccuratetowithin0.04withprobability 0.90.
AsocialscientistwantedtoestimatetheproportionofschoolchildreninBostonwholivein a single-parentfamily.Shedecidedtouseasamplesizesuchthat,withprobability0.95,the error
Inarandomsampleof25people to estimatetheextentofvegetarianisminasociety,0peo-ple werevegetarian.Constructa99%Waldconfidenceintervalforthepopulationproportion of
TheGeneralSocialSurveyhasaskedrespondents,“Doyouthinktheuseofmarijuanashould bemadelegalornot?”Viewresultsatthemostrecentcumulativedatafileat sda.berkeley.edu/archive.htm
Forthe Students data file(Exercise1.2in Chapter 1) andcorrespondingpopulation,findthe ML estimateofthepopulationproportionbelievinginlifeafterdeath.ConstructaWald95%confidence
with y = 6 for n = 10 (e.g.,in R bytaking pi (π) asasequencebetween0 and 1andthentakingLasthelogof dbinom(6, 10,pi)). Identify ˆπ in theplotandexplain
Plotthelog-likelihoodfunction L(π) correspondingtothebinomiallikelihoodfunction ℓ(π)shownin Figure
Forasequenceofobservationsofabinaryrandomvariable,youobservethegeometricrandom variable(Section 2.2.2) outcomeofthefirstsuccessonobservationnumber y = 3. Findandplot the likelihoodfunction.
Forapoint estimate ofthemeanofapopulationthatisassumedtohaveanormaldistribution, a datascientistdecidestousetheaverageofthesamplelowerandupperquartilesforthe n = 100
RefertoExercise3.45andthe mgf m(t) = eμt+σ2t2~2 for anormaldistribution.For n indepen-dentobservations {Yi} from anarbitrarydistributionwithmean μ and variance σ2, let m(t)bethe mgf of
RefertoExercise2.66and the momentgeneratingfunction m(t) = EetY , analternativeto the probabilityfunctionforcharacterizingaprobabilitydistribution.Forindependentrandom variables Y1, Y2, …, Yn,
and π2 = 0.10. Simulateamillionsample proportionsfromeachtreatmentwith n1 = n2 = 50. Constructhistogramsfor ˆπ1~ˆπ2 and for log(ˆπ1~ˆπ2).
Forindependent Y1 ∼ binom(n1, π1) and Y2 ∼ binom(n2, π2) random variables, ˆπ1~ˆπ2 is called the relativerisk or risk ratio. Thismeasureisoftenusedinmedicalresearchtocomparethe
When T is astandard normal randomvariable,whydoesthedeltamethodnotimplythat T2 has anormaldistribution?(Hint: FormtheTaylor-seriesexpansionof g(t) = t2 around g(0).In Section 4.4.5 weshallseethat T2
Manypositively-valuedresponsevariableshaveaunimodaldistributionbutwithstandard deviation proportionaltothemean.Identifyatransformationforwhichthevarianceisapprox-imately
Forabinomialsample proportion ˆπ, showthattheapproximatevarianceof sin−1(ºˆπ) (with the anglebeingmeasured in radians)is1/4n, sothisisavariancestabilizingtransformation.(In
Forabinomialparameter π, g(π) = log[π~(1 − π)] is calledthe logit. Itisusedforcategorical data, asshownin Chapter 7. Let T = ˆπ for n independentbinarytrials.Usethedeltamethod to showthat
Explainthedifferencebetween convergenceinprobability and convergenceindistribution.Explain howonecanregardconvergenceinprobabilityasaspecialcaseofconvergencein distribution
is reasonableforgivingabellshape.Forthis M, showthat Y has anapproximatenormal sampling distributionwhen n ≥ 10S2. Forthis guideline, howlargearandomsampledoyouneedfromanexponentialdistributionto
Consider n independentobservationsofarandomvariable Y that hasskewnesscoefficient S = E(Y − μ)3~σ3.(a) Showhow E(Y −μ)3 relates to E(Y −μ)3. Based on this,showthattheskewnesscoefficient for
Theformula σY= σ~ºn for thestandarderrorof Y treats thepopulation size as infinitely large relativetothesamplesize n. Withafinitepopulationsize N, separateobservationsare
Forindependentobservations,var(Σi Yi) = Σi var(Yi). Explainintuitivelywhy Σi Yi has a larger variancethanasingleobservation Yi.
Inthepreviousexercise,explainwhatisincorrectabouteachoptionthatyoudidnotchoose.
TheCentralLimitTheoremimpliesthat(a) Allvariableshaveapproximatelybell-shapedsampledatadistributionsifarandomsample containsatleastabout30observations.(b)
Inonemilliontossesofafaircoin,theprobabilityofgettingexactly500,000headsand500,000 tails (i.e.,asampleproportionofheadsexactly=1/2)is(a) verycloseto1.0,bythelawoflargenumbers.(b)
Thestandarderrorofastatisticdescribes(a) Thestandarddeviationofthesamplingdistributionofthatstatistic.(b) Thestandarddeviationofthesampledata.(c)
Whichdistributiondoesthesampledatadistributiontendtoresemblemoreclosely—thesam-pling distributionofthesamplemeanorthepopulationdistribution?Explain.Illustrateyour answerforavariable Y that
and σ = 7.75. Plot the populationdistributionandthesimulatedsamplingdistributionofthe10,000 y values.Explain whatyour plotsillustrate.
bytaking10,000simulations of arandomsampleofsize n = 200 from agammadistributionwith μ =
MimictheappdisplayoftheCentralLimitTheoremin Figure
and amedianof0.69.As n increases, doesthesamplingdistributionofthesamplemedianseemtobeapproximately normal?
Simulatefor n = 10 and n = 100 the samplingdistributionsofthesamplemedianforsampling from theexponentialdistribution(2.12)with λ = 1.0, whichhas μ = σ =
Asurveyisplannedtoestimatethepopulationproportion π supportingmoregovernment action toaddressglobalwarming.Forasimplerandomsample,if π maybenear0.50,how large should n
Considerthestandarderror»π(1 − π)~n of asampleproportion ˆπ of successes in n binary trials.(a) Reportthestandarderrorwhen π = 0 or π = 1. Whywouldthisvaluemakesensetoyou
Whensampledata wereusedtorankstatesbybraincancerrates,Ellenberg(2014)noted that thehighestrankingstate(SouthDakota)andthenearlylowestrankingstate(North
Simulatewhatwouldhappenifeveryoneinacollegewith1000studentsflippedafaircoin100 times andobservedtheproportionofheads.Whatdoyougetforthemeanandthestandard deviation
Construct a populationdistributionthatisplausiblefor Y = numberofalcoholicdrinksinthe past day.(a) Simulateasinglerandomsampleofsize n = 1000 from thispopulationtoreflectresults of
Usingsoftware,simulatetakingsimplerandomsamplesfromabimodalpopulationdistribu-tion. (Alternatively,youcanuseanappsuchasthe Sampling DistributionfortheSample Mean(ContinuousPopulation) app at
Using software,simulateformingsampleproportionsforsimplerandomsamplesofsize n = 100 when π = 0.50. (Alternatively,youcanuseanapp,suchasthe Sampling Distributionforthe Sample Proportion app at
Inyourschool,supposethatGPAhasanapproximatenormaldistributionwith μ = 3.0, σ = 0.40.Not knowing μ, yourandomlysample n = 25 studentstoestimateit.Usingsimulationfor this
Toapproximatethemean μ of aprobabilitydistributionthatdescribesarandomphenomenon, yousimulate n observationsfromthedistributionandfind y. Explainhowto assess howclose y is likelytobe to μ.
GenerateamillionindependentPoissonrandomvariableswithparameter(i) μ = 9, (ii) μ =100, (iii) μ = 100000. Showhowtoconstructtransformedvaluesthathaveaboutthesame variabilityineachcase.
SunshineCity,whichattractsprimarilyretiredpeople,has90,000residentswithameanage of 72yearsandastandarddeviationof12years.Theagedistributionisskewedtotheleft.A random
Atauniversity,60%ofthe7400studentsarefemale.Thestudentnewspaperreportsresultsof a surveyofasimplerandomsampleof50students,18femalesand32males,tostudyalcohol abuse, suchasbingedrinking.(a)
andastandarddeviationof1.5.SupposetheCensusBureauinsteadhadestimatedthis mean usingarandomsampleof225homes,andthatsamplehadameanof2.4andstandard deviation of1.4.Describethecenterandspreadofthe(a)
AccordingtotheU.S.CensusBureau,thenumberofpeopleinahouseholdhasameanof
AccordingtoaGeneralSocialSurvey,intheUnitedStatesthepopulationdistributionof Y =numberofgoodfriends(notincludingfamilymembers)hasameanofabout5.5andastandard deviation ofabout3.9.(a)
Oneachbetinasequenceofbets,youwin$1withprobability0.50andlose$1(i.e.,win−$1) withprobability0.50.Let Y denote thetotalofyourwinningsandlosingsafter100bets.Giving
Simulaterandomsamplingfromauniformpopulationdistributionwithseveral n valuesto illustrate theCentralLimitTheorem.
Simulaterandomsamplingfromanormalpopulationdistributionwithseveral n valuesto illustrate thelawoflargenumbers.
Simulatetakingarandomsampleofsize n from aPoissondistributionwith μ = 5. Find y for n = 10, n = 1000, n = 100, 000, and n = 10, 000, 000 to illustrate thelawoflargenumbers.
Refertothepreviousexercise.For n rolls ofthedice,let X = max(y1, y2, ...,yn).(a) Constructthe sampling distributionof X when n = 2.(b) Whatdoyouexpectfortheappearanceofthesamplingdistributionof X
speculatedabouttheshapeofthesamplingdistribution of Y for 10rolls.Useasimulation andconstructahistogramtoportraythesampling distribution inthatcase.
Theoutcomeofrollingabalanceddicehasprobability 1~6 for eachof {1, 2, 3, 4, 5, 6}. Let(y1, y2) denotetheoutcomesfortworolls.(a) Enumeratethe36possible(y1, y2)
Constructthesamplingdistributionofthesampleproportionofheads,forflippingabalanced coin (a) once; (b) twice; (c) three times; (d) four times.Describehowtheshapechanges as thenumberofflips n increases.
Inflippingabalancedcoin n times, areyoumorelikelytohave(i)between40and60heads in 100flips,or(ii)between490and510headsin1000flips?As n increases, explainwhythe proportion of
ForthePresidentialelectionin2020,ofanexitpollof909votersinthestateofNewYork,64%votedforBidenand36%votedforTrump.Inresponsetothequestion“Isclimatechangea serious
Theexamplein Section 3.1.4 simulatedsamplingdistributionsofthesamplemeantodetermine howprecise Y for n = 25 mayestimateapopulation mean μ.(a) Findthetheoreticalstandarderrorof Y for
TheU.S.JusticeDepartmentandothergroupshavestudiedpossibleabusebypoliceofficers in theirtreatmentofminorities.Onestudy,conductedbytheAmericanCivilLibertiesUnion, analyzed
The49studentsinaclassattheUniversityofFloridamadeblindedevaluationsofpairsof cola drinks.Forthe49comparisonsofCokeandPepsi,Cokewaspreferred29times.Inthe
Inanexitpollof1648votersinthe2020SenatorialelectioninArizona,51.5%saidtheyvoted for MarkKellyand48.5%saidtheyvotedforMarthaMcSally.(a) Supposethatactually 50%
In anexitpollof2123votersinthe2018SenatorialelectioninMinnesota,61.0%saidtheyvoted for theDemocraticcandidateAmyKlobucharinherraceagainsttheRepublicancandidate Jim
Likethegammadistribution,thelog-normaldistribution(Exercise2.71),theWeibulldistri-bution (Exercise2.72),andtheParetodistibution(Exercise2.73),anotherdistributionfor skewed-rightvariablesisthe
The Paretodistribution, introducedbytheItalianeconomistWilfredoParetoin1909to describe(onappropriatescales)incomeandwealth,isahighlypositively-skeweddistribution that has pdf f(y;α) = α~yα+1 for y
Likethegammaandlog-normaldistributions,the Weibulldistribution is positivelyskewed overthepositiverealline.Withshapeparameter k > 0 and scaleparameter λ > 0, its cdf is F(y; λ, k) = 1 −
When Y has positivelyskeweddistributionoverthepositiverealline,statisticalanalysesoften treat X = log(Y ) as havinga N(μ, σ2) distribution. Then Y is saidtohavethe log-normal distribution.(a)
The betadistribution is aprobabilitydistributionover(0,1)thatisoftenusedinapplications for whichtherandomvariableisaproportion.Thebeta pdf isfor parameters α and β, where Γ(⋅) denotes
Forasequenceofindependent,identicalbinarytrials,explainwhytheprobabilitydistribution for Y = the numberofsuccessesbeforefailurenumber k occurshasprobabilityfunctionThis distribution,studiedfurtherin
Apopulationhas F females and M males. Forarandomsampleofsize n without replacement, explain whythe pmf for Y = numberoffemalesinthesampleisThis is called the hypergeometricdistribution.
For n observations {yi}, let y(1) ≤ y(2) ≤ ⋯ ≤ y(n) denote theirorderedvalues,called order statistics. Let qi bethe i~(n + 1) quantileofthestandardnormaldistribution,for i = 1. ...,n. When
Momentsofadistributioncanbederivedbydifferentiatingthe moment generatingfunction(mgf ), m(t) = EetY .This functionprovidesanalternativewaytospecifyadistribution.(a) Showthatthe kth derivative
Foruncorrelatedrandomvariables U, V , and W, let X = U + V and Y = U +W.(a) Showthatcov(X,Y ) = var(U) and(b) Forsomescaling,suppose X = math achievementtestscore, Y = verbalachievementtest score, U
Boundsforthecorrelation:(a) Considerrandom variables X and Y and theirstandardizedvariables Zx and Zy. Using the equationsfromthepreviousexerciseandtherelationbetweenthecorrelationand
Considertworandomvariables X and Y :(a) Showthatvar(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).(b) Showthatvar(X − Y ) = var(X) + var(Y ) − 2cov(X,Y ).(c) Showhow(a)and(b)simplifywhen X and Y are
Forindependentbinom(1, π) random variables X and Y , let U = X + Y and V = X − Y . Find the jointprobabilitydistributionof U and V . Showthat U and V are uncorrelatedbutnot independent.
ContructanexampleofaMarkovchain,andusesimulationtorandomlygenerate100values from it.PlotthesequenceanddescribehowtheMarkovpropertyaffectstheplot.
For n coin-flip betsasdescribedin Section 2.6.7, let pn denote theproportionof t between1 and n for whichthetotalwinnings Yt at time t is positive.(a) With n = 100,
Explainhowaboardgameusingdice,suchas“SnakesandLadders,”hasasequenceofoutcomes that satisfiestheMarkovproperty.
Abalancedcoinisflippedtwice.Let X denote theoutcomeofthefirstflipand Y denote the outcomeofthesecondflip,representing head by1and tail by0.Supposetheflipsare independent.(a) Let Z indicate
Let (Y1, Y2, ...,Yc) denote independentPoissonrandomvariables,withparameters(μ1,μ2, ...,μc).(a) Explainwhythejointprobabilitymassfunctionfor {Yi} is cΠi=1[exp(−μi)μyi i ~yi!]for
Consider the multinomialdistribution(2.14)with c = 3 categories.(a) Explainwhythemarginaldistributionof Y1 is binomial.Basedonthis,report E(Y1) and var(Y1).(b) Are Y1 and Y2
Supposethatconditionalon λ, thedistributionof Y is Poissonwithmeanparameter λ, but λitself variesamongdifferentsegmentsofapopulation,with μ = E(λ). Usethelawofiterated expectationtofind E(Y ).
Reviewtheresultaboutthe“probabilityintegraltransformation”in Section 2.5.7. Foracontin-uous randomvariable Y with cdf F, findtheprobabilitydistributionoftheright-tailprobability X = 1 − F(Y ).
If Y is astandardnormalrandomvariable,with cdf Φ, whatistheprobabilitydistribution of X = Φ(Y )? Illustratebyrandomlygeneratingamillionstandardnormalrandomvariables, applying the cdf function Φ()
The pdf f of a N(μ, σ2) distribution canbederivedfromthestandardnormal pdf ϕ shownin equation (2.9).(a) Showthatthenormal cdf F relates tothestandardnormal cdf Φ by F(y) = Φ[(y−μ)~σ].(b)
By Jensen’sinequality, convexfunctionssatisfy E[g(Y )] ≥ g[E(Y )]. Usethistoprovethat for concavefunctions, E[g(Y )] ≤ g[E(Y )]. Applytheappropriatecasesto log(Y ) and 1~Y for a
The Markov inequality states thatwhen P(Y ≥ 0) = 1, then P(Y ≥ t) ≤ E(Y )~t.(a) When Y is discreteoverthenonnegativeintegers,provethisbyexplainingwhy E(Y ) ≥Σy≥t yf(y) ≥ Σy≥t tf(y) =
Section 2.4.5 showedthatforabinom(n, π) randomvariable,thesampleproportion ˆπ has standard deviation»π(1 − π)~n. Usethistoexplainwhy ˆπ tends tobecloserto π as n
Aprobabilitydistributionhasa scaleparameter θ if, whenyoumultiply θ byaconstantc, all valuesinthedistributionmultiplybyc. Ithasa locationparameter θ if, whenyouincrease θbyaconstantc,
Whenaprobabilityfunctionissymmetricanditsmomentsexist,explainwhy E(Y − μ)3 = 0, so theskewnesscoefficient=0.
Section 2.5.5 showedthatthewaitingtime T for thefirstoccurrenceofaPoissonprocesshas the exponentialdistributionwithparameter λ. Forthisdistribution,showthat P(T > u + t S T > u) = P(T > t). Bythis
Showing 1100 - 1200
of 3906
First
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Last