All Matches
Solution Library
Expert Answer
Textbooks
Search Textbook questions, tutors and Books
Oops, something went wrong!
Change your search query and then try again
Toggle navigation
FREE Trial
S
Books
FREE
Tutors
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Hire a Tutor
AI Study Help
New
Search
Search
Sign In
Register
study help
business
statistics informed decisions using data
Questions and Answers of
Statistics Informed Decisions Using Data
Showthatforthenullmodel E(Yi) = β0, leastsquaresyields ˆβ0 = y.
ThestatisticianGeorgeBox,whohadanillustriousacademiccareerattheUniversityofWis-consin, isoftenquotedassaying,“Allmodelsarewrong,butsomemodelsareuseful.”Whydo youthinkthat,inpractice, (a) all
TheInternetsite www.artofstat.com/web-apps has a Guess theCorrelation app. Playthe CorrelationGame 10 times.Showthetableofguessesandactualvaluesandfindthecorrelation betweenthem.
Constructascatterplotwith5pointsthathaveacorrelationcloseto +1, andthenaddasingle pointthatchangesthecorrelationtoastrongnegativevalue.33 Explain whythissingleoutlying observationhassomuchinfluence.
The Hare data fileatthebook’swebsite32 has datafor550haresonbodymass(grams)and hind footlength(mm), bygenderofthehare.Useregressionmodelswithbodymassasthe
for thepriordistributionfor β0. Showthatshrinkingβ0 far fromtheleastsquaresestimateof28.2toward0alsoforcesdramaticchangesin the otherBayesianposteriormeanestimates.(c) With τ = 10 and
for theeffectsoflife eventsandSESandcompareresultswithhighlydispersenormalpriorshaving τ = 10.0.Explain howtheposteriormeansfor β1 and β2 dependon τ .(b) In(a),supposeyoualsoused τ =
for β1 and β2 (and thusprecision 1~(0.20)2 = 25) yethaveahighlydispersepriorfor β0 (e.g., precision = 10−10), wecan specifya3×3 matrix A to usefortheprecision B0,
Refertothementalimpairmentexamplein Sections 6.4.2 and 6.6.2.(a) Theexamplein Section 6.6.2 used highlydispersepriors.Let’scompareresultstoin-formativepriorsbasedonsubjectivebeliefsthat β1 and β2
FortheScottishhillsracesdata,modeltherecordtimesimultaneouslyformenandwomenby using distance,climb,andgenderasexplanatoryvariables.Prepareareportofatmost300
UselinearmodelingtoanalyzetherecordtimesformenintheScottishhillraces,withdistance and climbasexplanatoryvariables,(a) withleastsquares,(b) withBayesianmethods.Prepare a
ConductBayesianfittingofthelinearmodelfortheScottishhillraces,usingclimbanddis-tance predictorsofwomen’srecordtimeswithouttheoutlyingHighlandFlingraceobservation.Compare
Apharmaceuticalclinicaltrial31 randomly assigned24patientstothreetreatmentgroups(drug A, drugC,placebo)andcomparedthemonameasureofrespiratoryability(FEV1 = forced expiratory
For72young girls sufferingfromanorexia,the Anorexia.dat file atthebook’swebsiteshows their weightsbeforeandafteranexperimentalperiod.Thegirlswererandomlyassignedto
Refertothepreviousexample.Thedataexhibitastrongpositivecorrelationof0.84between selling priceandthetaxbill.Mightthisbeaspuriousassociation,withthesizeofthehome causally
912 11732 1 no 3 365.55165430764 2 no(a) Summarizethedatawithascatterplot between y and x1, usingseparatesymbolsforthe twocategoriesof x2.(b) Fitthemodel E(Yi) = β0 + β1xi1 + β2xi2.
Table6.5 showsobservationsonhomesalesinGainesville,Florida,fromthe Houses data file at thebook’swebsitefor100homes.Variableslistedaresellingprice(thousandsofdollars), size
1136.3607
0.03411.651 Anova(lm(SpermTotal~CW+factor(Color) + CW:factor(Color),data=Crabs2))Anova Table(TypeIItests)Sum SqDfFvaluePr(>F)CW
cm), whichisameasureofitssize,and color (1 = dark, 2 = medium, 3 = light),whichisa measure ofadultage,darkeronesbeingolder.> summary(lm(SpermTotal~CW+factor(Color), data=Crabs2))Estimate
and s = 2.0. Thetwo explanatory variablesusedin the R output arethehorseshoecrab’s carapacewidth (CW, mean18.6 cm, standarddeviation
Thedataset30 Crabs2 at thebook’swebsitecomesfromastudyoffactorsthataffectsperm traits ofmalehorseshoecrabs.Aresponsevariable, SpermTotal, isthelogofthetotalnumber of sperminanejaculate.Ithas y =
Forthe Polid data filesummarizedin Table5.2, conductanANOVAtoanalyzewhethermean politicalideologyvariesbyrace.Useafollow-upmultiplecomparisonmethodwithoverall confidence
Forthe UN data fileatthebook’swebsite(seeExercise1.24),constructamultipleregression modelpredictingInternetusingalltheothervariables.Usetheconceptofmulticollinearity to explainwhyadjusted R2 is
levelifweusetheBonferroniapproachto test thefamilyofthreeindividualeffects?Explain.(d) Aretheeffectsof tv and sport significant?Proposeanalternativemodel.
RefertothemodelfittedinthepreviousexercisetopredictcollegeGPA.(a) Test H0: β1 = β2 = β3 = 0. Reportthe P-valueandinterpret.(b) Showhowtoconductasignificancetestabouttheindividualeffectof hsgpa,
The Students data fileshowsresponsesonvariablessummarizedinExercise1.2.(a) Fitthelinearmodelusing hsgpa = high schoolGPA, tv = weeklyhourswatchingTV,and sport =
Exercise1.49gavealinkto2020U.S.statewidedataon x = percentageofpeoplewearing masks inpublicand y = percentageofpeoplewhoknowsomeonewithCovid-19symptoms.Interpretthevalueof r2 for
Refertotheexample in Section 6.2.5 of thecrimerateinFloridacounties.(a) Explainwhatitmeanswhenwesaythesedataexhibit Simpson’sparadox. Whatcould cause
Forthemodelpermittinginteractionbetweendistanceandclimbintheireffectonwomen’s record timesfortheScottishhillraces,analyzewhetheranyobservationisinfluentialinthe least
Refertothestudyofmentalimpairmentin Section 6.4.2.(a) Sketchafiguretoillustrateanassociationbetweenimpairmentandlifeeventsthatis spurious,
Forthe Covid19 data fileatthetextwebsite:(a) Constructthetwoscatterplotsshownin Figure 6.3.(b) Findandinterpretthecorrelationbetweentimeand(i)cases,(ii) log(cases).(c)
Inthe2000PresidentialelectionintheU.S.withDemocraticcandidateAlGoreandRepublican candidate GeorgeW.Bush,somepoliticalanalyststhoughtthatmostofthevotesinPalm
The Firearms2 data fileatthetextwebsiteshowsU.S.statewidedataon x = percentage of peoplewhoreportowningagunand y = firearm deathrate(annualnumberofdeaths per100,000population),from www.cdc.gov.
Foradvancedindustrializednations,the Firearms data fileatthetextwebsiteshowsannual homicide rates(permillionpopulation)andthenumberoffirearms(per100people),withdata takenfromWikipediaand
For theScottishhillracesdata,alinearmodelcanpredictmen’srecordtimesfromwomen’s record times.(a) Showthescatterplotandreportthepredictionequation.Predictthemen’srecordtime for
Afamilyofdistributions f(y; θ) is saidtohave monotone likelihoodratio (MLR) ifastatistic T(y) exists suchthatwhenever θ′ < θ, ℓ(θ)~ℓ(θ′) is anondecreasingfunctionof T. Forany
Foradiscretedistributionandateststatistic T with observedvalue tobs and one-sided Ha suchthatlarge T contradicts H0, mid P-value = 1 2P(T = tobs) + P(T > tobs).(a) Supposethat P(T = tj) = πj , j =
find the P-valueforeachsample.Plotahistogramordensityestimate using the1,000,000 P-values.Relateittotheresultin(a).
is true.Generate1,000,000randomsamples,eachofsize n = 1500, and for Ha: π >
From Section 2.5.7, if T is acontinuousrandomvariablewith cdf F, then F(T) has theuniform distribution over[0,1].(a) Insignificancetestingwithateststatistic T, explainwhy F(T) and 1−F(T) correspond
Explainwhatismeantby censored data. Giveanexampleofasituationinwhichsomeobser-vationswouldbe(a) right-censored,(b) left-censored.
Explainthelogicunderlyinginvertingpermutationteststoobtainaconfidenceintervalforthe difference betweentwopopulationmeans.Illustratethemethodbyfindingthe95%confidence
RefertoExercise5.44anditsscenarioof n1 = n2 = 4 with y1 = 5 and y2 = 10.(a) Constructtwo scenarios suchthatthetwo-sidedpermutationtestcomparingmeanswould have(i) P-value < 0.05, (ii) P-value >
Explainthelogicunderlyingthepermutationtesttocomparetwodistributions.Compareits assumptions withthoseofthetwo-sample t test.
ExplainwhytheconfidenceintervalbasedontheWaldtestof H0: θ = θ0 is symmetricaroundˆθ (i.e., havingcenterexactlyequalto ˆθ. Thisisnottruefortheconfidenceintervalsbasedon the
Foralargenumber n of independentPoissonrandomvariables {Yi}, with μ = E(Yi), consider testing H0: μ = μ0.(a) Showthatthescoreteststatisticis Z =ºn( ¯ Y − μ0)~ºμ0.(b) Showthatthe
Fortwocategoricalvariables X and Y , let πij = P(X = i, Y = j), i = 1, ...,r, j = 1, ...,c.Consider H0: πij = P(X = i)P(Y = j) for all i and j with n observationshavingcellcounts{yij}.
Fora c-category variable,considertesting H0: π1 = π10, ...,πc = πc0 when counts (y1, ...,yc)haveamultinomialdistribution(2.14)with n = Σj yj .(a) UsingtheresultthattheMLestimateof πj is the jth
Derivethelikelihood-ratiotestof H0: π1 = π2 for independent Y1 ∼ binom(n1, π1) and Y2 ∼binom(n2, π2).
Adataanalystassumesthatthe n independentobservationsinadatafilecomefromaPoisson distribution.(a) Derivethelikelihood-ratiostatisticfortesting H0: μ = μ0 against Ha: μ ≠ μ0.(b)
Whenarticlesinthemassmediaaboutmedicalstudiesreportlargedangersofcertainagents(e.g., coffeedrinking),laterresearchoftensuggeststhattheeffectsaresmallerthanfirstbe-lieved,ormaynotevenexist.Explainwhy.
Somejournalspublishresearchresultsonlyiftheyachievestatisticalsignificanceatthe0.05α-level.Explain publicationbias and itsdangers.
Inanevaluationof32schoolsinacountyoverthepastfiveyearsaccordingtothemean score ofseniorstudentsonastandardizedachievementtest,onlyoneschoolperformedabove the
Aresearchstudyconducts40significancetests.Ofthese,onlytwoaresignificantatthe0.05 level.Theauthorswriteareportaboutthosetworesults,notmentioningtheother38tests.Explain whatismisleadingabouttheirreport.
Aresearcherconductsasignificancetesteverytimesheanalyzesanewdataset.Overtime, she conducts100significancetests,eachatthe0.05level.If H0 is trueineverycase,whatis the
Youplantotest H0: μ1 = μ2. Whenyourresearchhypothesisisthat μ1 > μ2, ifyouarecorrect, explain whyyouwillhavegreaterpowerifyouuse Ha: μ1 > μ2 instead of Ha: μ1 ≠ μ2.
to explainwhy P(TypeII error) increasestoward0.95as μ decreases toward0.
Fortesting H0: μ = 0 against Ha: μ > 0 with α = 0.05, use Figure
as π gets closertothe H0 valueof0.50.(c) Set π = 0.60. Report P(TypeIIerror)for n equal to(i)50,(ii)100,(iii)200,and summarize theimpactof n on P(TypeIIerror).
with samplesize100, and set P(TypeIerror) = α = 0.05. Theappshowsthenullsamplingdistributionof ˆπ and the actual samplingdistributionof ˆπ for varioustruevaluesof π. Clickon Show TypeIIerror,
and Ha: π >
Usethe ErrorsandPower app at www.artofstat.com/web-apps to investigatetheperformance of significancetests.Setthehypothesesas H0: π =
Medicaltestsfordiagnosingconditionssuchasbreastcancerarefallible,justlikedecisions in significancetests.Identify(H0 true, H0 false) withdisease(absent,present),and(Reject H0, Donotreject H0)
Criminaldefendantsareconvictedifthejuryfindsthemtobeguilty“beyondareasonable doubt.”Ajuryinterpretsthistomeanthatifthedefendantisinnocent,theprobabilityof
Foramatched-pairs t test (Exercise5.16),let σ2 = var(Yi1) = var(Yi2) and ρ = corr(Yi1, Yi2).Using theresultfromExercise2.63thatfortworandomvariables Y1 and Y2, var(Y1 − Y2) =var(Y1) + var(Y2) −
Refertothepreviousexerciseandthe P-valueof0.057.(a) Explainwhythe P-valueisthesmallest α-levelatwhich H0 can berejected.(b) Explainwhythe94.3%confidenceintervalisthenarrowestconfidenceintervalfor μ
level.
Arandomsampleofsize40has y = 120. The P-valuefortesting H0: μ = 100 against Ha:μ ≠ 100 is 0.057. Explainwhatisincorrectabouteachofthefollowinginterpretationsofthis
at μ = 4. Then:(a) At μ = 5, β > 0.36.(b) If α = 0.01, thenat μ = 4, β > 0.36.(c) If n = 50, thenat μ = 4, β > 0.36.(d) Thepowerofthetestis0.64at μ = 4.(e) Thismustbefalse,becausenecessarily
Let β denote P(TypeIIerror).Foran α = 0.05-leveltestof H0: μ = 0 against Ha: μ > 0 with n = 30 observations, β =
Weanalyzewhetherthedischargeofarsenicintheliquideffuentfromanindustrialplant exceeds thecompanyclaimofameanof10 mg perliter.Forthedecisionintheone-sidedtest using α = 0.05:(a) Iftruly μ = 10,
Resultsof99%confidenceintervalsformeansareconsistentwithresultsoftwo-sidedtestswith which α-level?Explaintheconnection.Selectthecorrectresponse(s)inthenexttwoexercises.(Morethanonemaybecorrect.)
Fortesting H0: P(Y = j S X = i) = P(Y = j) for all i and j, thatis, homogeneity of the conditional distributionsofa c-category responsevariableatthe r categories ofanexplanatory
FortheBayesianmodelforcomparingmeansin Section 5.3.4, explainwhythepriorand posterior P(μ1 = μ2) = 0.
Constructtwoscenariosofindependentsamplesoffourmenandfourwomenwith y = number of hoursspentonInternetinpastweekhaving y1 = 5 and y2 = 10, suchthatfor testing H0 ∶μ1 = μ2 against Ha ∶ μ1 ≠
Explainwhy the terminology“donotreject H0” ispreferableto“accept H0.”
Small P-valuesindicatestrongevidenceagainst H0, becausethedatawouldthenbeunusual if H0 weretrue.Whydoesitnotmakesensetodefinea P-valueastheprobabilitythatthe test statisticequalsthe observedresult
Abook44 on methodsformodelingsurvivaltimesdiscussedanexamplecomparingtimesof remission (inweeks)ofleukemiapatientstakingadrugorcontrol.Thedata,withcensored
Fortheexamplein Section 5.8.4, thesubjecttakingthedrugwhowascensoredafter4months is nowfoundtohavehadasurvivaltimeof11months.(a) Conductasignificancetestofidenticalsurvivaldistributions.Interpretthe
and showtherelationtothe95%confidence intervalforthecomparison.(b) Sincethedistributionofsellingpriceseemsskewedright,conductapermutationtestto compare thepopulationmedians.Interpret.
The Houses data fileatthebook’swebsitelists,for100homesalesinGainesville,Florida, severalvariables,includingthesellingprice(inthousandsofdollars)andwhetherthehouseis new (1 = yes,0 = no).(a)
Refertothepettingversuspraiseofdogsexamplein Section 5.8.2.(a) Forthe14timesobserved,showthepartitioningofthevaluestothetwogroupsforwhich the P-valuewouldbesmallest.Whatisthat P-value?(b)
Section 5.3.2 used a t test tocomparecognitivebehavioralandcontrolgroupsforanorexia patients.Usingsimulationwithsoftwareorwiththe Permutation Test app at www.artofstat.com/web-apps,
Foran α = 0.05-levellikelihood-ratiotestof H0: θ = θ0 using thelikelihoodfunctionvaluesℓ(ˆθ) and ℓ0 = ℓ(θ0), explainwhythecorresponding95%confidenceintervalfor θ is thesetofθ0 for which
Aremanymedical“discoveries”actuallyTypeIerrors?Inmedicalresearch,suppose43 that an actualpopulationeffectexistsonly10%ofthetimeandthatwhenaneffecttrulyexists, the
JonesandSmithseparatelyconductstudiestotest H0: μ = 500 against Ha: μ ≠ 500, eachwith n = 1000. Jonesgets y = 519.5, with se = 10.0. Smithgets y = 519.7, with se = 10.0.(a) Showthat the
against Ha: π ≠ 0.50, each with n = 400. Jonesgets ˆπ = 220~400 = 0.550. Smithgets ˆπ = 219~400 = 0.5475.(a) Showthatthe P-valueis0.046forJonesand0.057forSmith.Using α = 0.05, indicatein
JonesandSmithseparatelyconductstudiestotest H0: π =
Section 5.5.5 mentionedastudyaboutwhetherastrologerscanpredictthecorrectpersonality chartforagivenhoroscopebetterthanbyrandomguessing.(a)
Astudy42 compared populationdynamicsofthethreatenedspeciesSootyFalcononFahal Island andtheDaymaniyatislandsintheSeaofOmanduring2007-2014.Theclutchsizeshad mean
The2018General SocialSurveyasked1136subjectswhethertheybelieveinheavenandwhether they believeinhell.Ofthem,804said yes to both,209said no to both,113said yes to heaven and no to hell,and10said no to
Astudyof100womensufferingfromexcessivemenstrualbleedingconsiderswhetheranew analgesic providesgreaterreliefthanthestandardanalgesic.Ofthewomen,40reportedgreater relief
The Afterlife data fileatthebook’swebsiteshowsdatafromthe2018GeneralSocialSurvey on postlife = beliefintheafterlife(1 = yes,2 = no), religion(1 = Protestant,2 = Catholic, 3 =Jewish,
Forthedatainthe PartyID data fileatthebook’swebsite,usesignificancetestingandesti-mation methodstoanalyzetherelationshipbetweenpoliticalpartyaffiliationandrace.
Usingthe GSS2018 data file,crossclassifythe2016voteforPresident(PRES16, with1 = Clinton, 2 = Trump,3 = Other, 4 = Never)bysex(1 = male, 2 = female).(a)
Withthedataintheexamplein Section 5.4.5, conductandinterpretthePearsonchi-squared test (a) comparingdivorced/separatedwithnevermarriedonhappiness;(b) comparingmarried with
Fortheexamplein Section 5.4.5, interpretthestandardizedresidualsforthe not toohappy category.
Usethe Happy data filefromthe2018GeneralSocialSurveyatthetextwebsitetoforma contingencytablethatcrossclassifieshappinesswithgender.For H0: independencebetween happiness andgender:(a)
The Substance data fileatthebook’swebsiteshowsacontingencytableformedfromasurvey that askedasampleofhighschoolstudentswhethertheyhaveeverusedalcohol,cigarettes, and marijuana.Findthe
Showing 900 - 1000
of 3906
First
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Last