Answered step by step
Verified Expert Solution
Question
1 Approved Answer
Directions for Problem #4 in Excel The goal of this problem is to have you: Use Excel to generate the future value of each of
Directions for Problem #4 in Excel The goal of this problem is to have you: Use Excel to generate the future value of each of the various investments made over the course of the 25 years. Use Excel to add these values up for you! I. Generating the future value of each individual investment Open a New Workbook in Excel. In Column A, we will keep track of the month for which the investment was made. Let n be the month in which a payment was invested. o In Cell A1, input \"n\". o In Cell A2, type \"0\". o In Cell A3, type \"1\". A nifty trick in Excel is to use it to continue a pattern that can be deduced from previous cells. Highlight cells A2 and A3. You should notice a rectangular box in the lower righthand corner of the selection. Click and hold (i.e. don't release the mouse) this box. Now, scroll down. As you scroll, you should see numbers corresponding to the various values of n that would appear in the adjacent cells. Continue scrolling until you reach n=300 (cell A302). Your spreadsheet should look like this: Now, it's time to have Excel calculate the Future Value of the Payment made at the start of Month n. We'll use Column B to do this. Let Fn be the future value of the payment made during Month n 25 years from today. o In Cell B1, input \"Fn\". o In Cell B2, we need to input the future value using the compound interest formula. In order to have Excel use an expression to do computations, we must type \"=\" before the input. We'd thus like to type: \"=100*(1+.0006/12)^300\" into Cell B2, but this will not facilitate making Excel recognize a pattern easily! If you don't believe it, give the procedure that we tried before a try and see what happens! To get around this, note that the investment made at the start of Month n will be invested for 300 - n months. We can refer directly to n by using Column A. Thus, in Cell B2, type \"=100*(1+.0006/12)^(300-A2)\" o In Cell B3, type \"=100*(1+.0006/12)^(300-A3)\" o Highlight Cells B2 and B3. Rather than drag the highlighted box down, simply double click on the rectangular box in the lower righthand corner of the selection. This will automatically fill each of the cells in Column B for which there is an adjacent entry in Column A with the correct formula. Your spreadsheet should now look like this: Finally, we can get Excel to add all of the Future Values together. In Cell D2, type \"=SUM(B2:B302)\". This will add all of the values in cells B2 through B302 together, and should give you the sum of all of the investments, which should display as \"30326.8792\" You should now be able to use the spreadsheet you've created to find the total future value of the investments by repeating this procedure for the different given values of r! Math 1172 Project #2 Financial Applications of Geometric Series Due: Tuesday, October 11 Name(s): - - - - - - - - - - - - - - - - - - - - Description - - - - - - - - - - - - - - - - - - - Most people will have to deal with finances during their lives. Typical situations involve: Saving money Paying back student loans Understanding Credit Card Debt This assignment will explore these scenarios quantitatively. - - - - - - - - - - - - - - Purpose of the Assignment - - - - - - - - - - - - - - To apply knowledge of geometric sums to the above situations. To present the general methods behind modeling these situations (so they can be adapted to other similar situations should you need to do so!) - - - - - - - - - - - - - - - - - - - - - Directions - - - - - - - - - - - - - - - - - - - - This assignment is worth 15 pts. You may work in groups of up to 3 students. Each group will submit one copy of this assignment; group members should NOT submit individual assignments! Each group member's name should appear on the top of this page. Each member of the group will receive the same grade. If you need more space than what is provided, feel free to use scratch paper, but you must staple it to your assignment and clearly indicate to which problem any work belongs! 1 I. The Basics: Compound Interest Compound interest is an extremely important and useful concept! Should you be unfamiliar with it, please read the information posted here: http: //www.money-zine.com/investing/investing/understanding-compound-interest/ Using the ideas discussed in the above article, we can write a formula: \u0010 r \u0011nt F =P 1+ n F is the future value of the investment/loan, including interest. P is the principal investment amount (the initial deposit or loan amount). r is the annual interest rate, written as a decimal (ex: 6% =.06). n is the number of times that interest is compounded per year. t is the number of years the money is invested or borrowed. Problem 1: Suppose we invest $100 today. Calculate the future value 20 years from now under the following annual interest rates (i.e. n = 1) by using the formula above. a) 0.06% (a typical savings account rate) b) 1.2% (a typical high-yield money market rate) c) 3.1% (a typical 30-year US Treasury Bond Yield) d) 7.86% (the average annual growth rate of the S&P 500 between 1976-2016) 2 II. The Total Future Value of a Steady Stream of Payments Now, suppose we open an account and invest $100 at the beginning of every month, starting today, for 25 years. At the end of the 25 years, we make one final payment of $100. Problem 2: If we gain no interest on the monthly investments, how much will the account will be worth in 25 years? Remember to include the final payment! How should we go about calculating the value of the account at the end of the 25 years if we do invest? Let's first assume that the interest rate, r, is compounded monthly (so n = 12). In 25 years, the investment that we make today will be worth: \u0010 \u0010 r \u00111225 r \u0011300 100 1 + = 100 1 + 12 12 In 25 years, the investment that we make in 1 month from now will be worth: \u0010 \u0010 r \u0011299 r \u001112 239 12 = 100 1 + 100 1 + 12 12 (Note that 19 years and 11 months is 239/12 years). In 25 years, the investment that we make in 2 months from now will be worth: \u0010 r \u001112 238 r \u0011298 12 100 1 + = 100 1 + 12 12 \u0010 Problem 3: What will the future value of the payment that we make 47 months from now be worth in 25 years? Express your answer in terms of r. From the above, we can conclude that the amount of money we will have in 25 years will be the sum of the future values of the investments that we make every month! We will calculate this amount two different ways - by using Excel and by using finite geometric sums. Excel is a powerful tool for a wide variety of applications! If you are not familiar with using Excel, please see the instructions in the \"Projects\" Folder in Carmen. 3 Problem 4: Calculating the Total Future Value Using Excel For each interest rate r given in Problem 1, calculate the amount of money in the account by using an Excel spreadsheet to add up the future values of all of the monthly investments. If you are unfamiliar with Excel, please see the file in the project folder. When you are doing this, assume that the final payment of $100 will be made at the end of 25 years, so that the last payment will be 100 (1 + r/12)0 . Report your final answers below to 2 decimal places. You do NOT need to hand in the Excel sheet. Note that the first answer is provided. Once you have set up your spreadsheet, please use this result to verify that your spreadsheet is calculating the total future value correctly! At r = .06%, the account will be worth: $ 30326.88 . At r = 1.2%, the account will be worth: $ . At r = 3.1%, the account will be worth: $ . At r = 7.86%, the account will be worth: $ . It's possible that your answer may differ by a few decimal places. To ensure the most accurate response, make sure that you are not rounding until the end! Compare these results to the number you found in Problem 2 to see the effect of various interest rates! There is a way to do this using the geometric sum formula! First: Problem 5: To derive the formula: N X arn = a n=0 first notice that PN n=0 1 rN +1 1r arn is notation for a + ar + ar2 + + arN . Let Sn = PN n=0 arn . i Write out the expression Sn represents. On the line below it, write out the expression rSn represents by multiplying both sides of the equation for Sn by r. ii. Subtract both equations and solve for Sn . 4 Now, let's return to the cash flow described at the beginning of this section. Note that we can write the future value off ALL of the payments as: \u0010 \u0010 \u0010 \u0010 r \u0011300 r \u0011299 r \u0011298 r \u00110 + 100 1 + + 100 1 + + ... + 100 1 + F = 100 1 + 12 12 12 12 This is a geometric sum and we can use the formula in Problem 5 to evaluate it! Problem 6: A. Write the above expression for F in summation notation. Then, use the formula from Problem 5 (and a bit of algebra) to show that: \u0014 \u0015 r \u0011301 1200 \u0010 1+ 1 F = r 12 B. Using the rates in Problem 1 in the formula in Part A, show that the results here are consistent with the values generated in Excel from Problem 4. - At r = .06%, the account will be worth: $ . - At r = 1.2%, the account will be worth: $ . - At r = 3.1%, the account will be worth: $ . - At r = 7.86%, the account will be worth: $ 5 . III. The Annuity Formula We can of course generalize the result in the previous problem. In fact, if we invest a principal amount P at the beginning of each period and make a final investment of P at the end of the final period, we can write down a so-called \"annuity formula\": \u0014 \u0015 r \u0011nt+1 Pn \u0010 1+ 1 F = r n where: F is the future value of ALL of the investments/loans, including interest. P is the principal amount invested or paid at the beginning of each period. r is the annual interest rate, written as a decimal (ex: 6% =.06). n is the number of times that interest is compounded per year. t is the number of years the money is invested or borrowed. This formula is useful because, given a certain interest rate, it allows for one to figure out the total future value of a series of investments or the amount of money one should invest monthly to reach a certain goal. 6 Problem 7: Suppose you can afford to invest $1000 at the beginning of each month in hopes to save for retirement at the age of 65. As soon as you turn 65, you make one final investment of $1000. Using the annuity formula, it can be shown that the total future value of the account when you are 65. Assuming you start this process as soon as you turn 23 (so you invest for 42 years total): The account will be worth $1,037,402.58 under the annual rate of 3.1% The account will be worth $3,974,115.26 under the annual rate of 7.86% Make sure that you can calculate the values above. For both the annual rates r = 3.1% and r = 7.86%, compounded monthly: A. Calculate the total future value of the account when you are 65 assuming you start this process as soon as you turn 30 (so you invest for 35 years total). B. Calculate the total future value of the account when you are 65 assuming you start this process as soon as you turn 40 (so you invest for 25 years total). 7 Problem 8: Suppose you invest the same amount $P at the beginning of each month in a retirement account in hopes to save $700,000 for retirement at the age of 65. If you start this process as soon as you turn 23 (so you invest for 42 years total), the annuity formula can be used to show that the amount of money you will need to invest per month is: $674.76 under the annual rate of 3.1% $176.14 under the annual rate of 7.86% Make sure that you can calculate the values above. For both the annual rates r = 3.1% and r = 7.86%, compounded monthly, find the amount of money you will need to invest per month: A. if you start this process as soon as you turn 30 (so you invest for 35 years total). B. if you start this process as soon as you turn 40 (so you invest for 25 years total). 8 IV. Amortization Of course, investing (i.e. making money) is nice, but this same rationale can be applied to debt as well. The situation has a slightly added complication in that the debt owes grows in time, and so the payments made must cover not only the debt incurred at the present time, but must account for interest accrued along the way! This is the concept of amortization, a term used to describe the paying off of debt with a fixed repayment schedule in regular installments over a period of time. The following example walks you through a typical amortization calculation. Suppose Patrick has accumulated $10,000 in credit card debt. He decides to stop spending immediately, and pay P per month required until his debt is paid off. His credit card charges an annual interest rate of 18%, compounded monthly. We will answer the following questions: how long will it take him to pay off his debt and how much will he pay under different values of P ? To get started, we first figure out the amount owed after the first few months. To follow the line of reasoning here, it is highly recommended that you READ each line aloud and WRITE down each step after you say it. This will be hard to follow if you just try to read the lines below and not write anything down! While you are writing this down, try to get a sense for what it is you are computing! Month 1: The amount owed is $10000 and P is repaid. The remaining balance is thus 10000 P . This is the amount to which interest will be applied, so at the end of the first month (i.e. before the payment of P is made at the beginning of the second month, \u0012 \u0013 .18 (10000 P ) 1 + = 1.015(10000) 1.015P 12 is owed. Thus, the amount that Patrick owes after the payment is made at the start of month 2 is: 10000(1.015) [P + 1.015P ] Month 2: The amount owed at the end of the second month is 1.015(10000) [P + 1.015P ]. This is the amount to which the interest will be applied. After the second month (before the payment is made at the start of month 3), the amount owed is: [(1.015)10000 (P + 1.015P )] 1.015 = 10000(1.015)2 [P (1.015) + P (1.015)2 ]. Thus, the amount that Patrick owes after the payment is made at the start of month 3 is: 10000(1.015)2 [P + 1.015P + (1.015)2 P ] 9 Problem 9: By applying the same logic above: A. Repeat the logic above to calculate the amount owed after Patrick makes the payment after the start of Month 4. B. Hopefully, the pattern is clear! Call the amount owed after the payment at the start of Month n An . Based off of this pattern, write down a formula for An . Then, using the geometric sum formula developed in Problem 5, show that the sum can be expressed as: An = 10000(1.015)n1 10 P [(1.015)n 1] . .015 The result above can be interpreted as follows: After the payment at the beginning of Month n is made, the Debt of $10,000 have grown to: D = 10000(1.015)n1 . This is equivalent to applying the compound interest formula to the original debt if one notes that at the start of Month n, interest has been applied to the debt n 1 times (since interest is applied at the end of the previous month). After the payment at the beginning of Month n is made, the future value of the amount he will have Repaid will be: P R= [(1.015)n 1] . .015 This is equivalent to applying the annuity formula to calculate the total future value of his payments! When the future value of his debt is equal to the future value of his amount repaid, Patrick is out of debt! Problem 10: A. If P = $100, will Patrick ever get out of debt? Justify your response! 11 B. For both P = $500 answer both: i. How long will it take for Patrick to get out of debt? ii. How much will he have to pay his credit card company? To answer ii. note that if you get a fraction of a month, the amount owed at the beginning of the final month will be less than P ! You should calculate the amount owed at the end of the month before Patrick makes the payment at the start of Month n. His payment for Month n will just be the remaining balance! Hint: If you perform the calculations for P = 200, you should find it takes 91 months to get out of debt, and that the total amount repaid is $18,039.72. This is NOT an easy calculation, so ask if you have questions! 12 Paying Off Student Loans Suppose that after graduation that Sarah must pay back $80,000 in student loans and that she has 15 years to do so. She has a direct subsidized undergraduate loan with an interest rate of 4.29%, compounded monthly and this interest starts to accrue the month after she graduates. The terms of her loan are such that she will make a payment at the beginning of each month for 15 years, starting with the month she graduates. Thus, she will make a total of 15 12 = 180 payments. Problem 11: The following will guide you through calculating what Sarah will pay each month. Note that this can be treated analogously to the Credit Card Debt example! Make sure you adapt the formula used there! A. Show that the future value of the Debt, D, after 15 years (n = 180) is $151,534.07. B. Suppose Sarah pays back P at the start of each month. Find the total amount Repaid, R, after 15 years (n = 180) in terms of P . C. Sarah will be out of debt when D = R. Since you know D = R when n = 180, equate the above results to find the value for P that Sarah must repay at the start of each month. 13 Note that this example can be used as a template to pay off any type of loan; it can be modified to calculate car payments or mortgage payments! In fact, the repayment scheme in general can be modified to account for paying over the amount P required each term (though you will not be asked to do so here!). Hopefully, this assignment has convinced you that there is indeed a variety of uses for geometric sums! Though the above examples give only a glimpse into how geometric series can and do arise in personal finances, they provide solid examples that the geometric sum formula is much more powerful than one may think at a first glance! 14 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 101.51 101.51 101.50 101.50 101.49 101.49 101.48 101.48 101.47 101.47 101.46 101.46 101.45 101.45 101.44 101.44 101.43 101.43 101.42 101.41 101.41 101.40 101.40 101.39 101.39 101.38 101.38 101.37 101.37 101.36 101.36 101.35 101.35 101.34 101.34 101.33 101.33 101.32 101.32 101.31 101.31 101.30 101.30 101.29 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 101.29 101.28 101.28 101.27 101.27 101.26 101.26 101.25 101.25 101.24 101.24 101.23 101.23 101.22 101.22 101.21 101.21 101.20 101.20 101.19 101.19 101.18 101.18 101.17 101.17 101.16 101.16 101.15 101.15 101.14 101.14 101.13 101.13 101.12 101.12 101.11 101.11 101.10 101.10 101.09 101.09 101.08 101.08 101.07 101.07 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 101.06 101.06 101.05 101.05 101.04 101.04 101.03 101.03 101.02 101.02 101.01 101.00 101.00 100.99 100.99 100.98 100.98 100.97 100.97 100.96 100.96 100.95 100.95 100.94 100.94 100.93 100.93 100.92 100.92 100.91 100.91 100.90 100.90 100.89 100.89 100.88 100.88 100.87 100.87 100.86 100.86 100.85 100.85 100.84 100.84 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 100.83 100.83 100.82 100.82 100.81 100.81 100.80 100.80 100.79 100.79 100.78 100.78 100.77 100.77 100.76 100.76 100.75 100.75 100.74 100.74 100.73 100.73 100.72 100.72 100.71 100.71 100.70 100.70 100.69 100.69 100.68 100.68 100.67 100.67 100.66 100.66 100.65 100.65 100.64 100.64 100.63 100.63 100.62 100.62 100.61 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 100.61 100.60 100.60 100.59 100.59 100.58 100.58 100.57 100.57 100.56 100.56 100.55 100.55 100.54 100.54 100.53 100.53 100.52 100.52 100.51 100.51 100.50 100.50 100.49 100.49 100.48 100.48 100.47 100.47 100.46 100.46 100.45 100.45 100.44 100.44 100.43 100.43 100.42 100.42 100.41 100.41 100.40 100.40 100.39 100.39 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 100.38 100.38 100.37 100.37 100.36 100.36 100.35 100.35 100.34 100.34 100.33 100.33 100.32 100.32 100.31 100.31 100.30 100.30 100.29 100.29 100.28 100.28 100.27 100.27 100.26 100.26 100.25 100.25 100.24 100.24 100.23 100.23 100.22 100.22 100.21 100.21 100.20 100.20 100.19 100.19 100.18 100.18 100.17 100.17 100.16 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 100.16 100.15 100.15 100.14 100.14 100.13 100.13 100.12 100.12 100.11 100.11 100.10 100.10 100.09 100.09 100.08 100.08 100.07 100.07 100.06 100.06 100.05 100.05 100.04 100.04 100.03 100.03 100.02 100.02 100.01 100.01 100.00 30326.88 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 134.97 134.83 134.70 134.56 134.43 134.29 134.16 134.02 133.89 133.76 133.62 133.49 133.36 133.22 133.09 132.96 132.82 132.69 132.56 132.43 132.29 132.16 132.03 131.90 131.77 131.63 131.50 131.37 131.24 131.11 130.98 130.85 130.72 130.59 130.46 130.33 130.20 130.07 129.94 129.81 129.68 129.55 129.42 129.29 129.16 129.03 128.90 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 128.77 128.64 128.51 128.39 128.26 128.13 128.00 127.87 127.75 127.62 127.49 127.36 127.24 127.11 126.98 126.86 126.73 126.60 126.48 126.35 126.22 126.10 125.97 125.85 125.72 125.59 125.47 125.34 125.22 125.09 124.97 124.84 124.72 124.59 124.47 124.35 124.22 124.10 123.97 123.85 123.73 123.60 123.48 123.35 123.23 123.11 122.99 122.86 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 122.74 122.62 122.49 122.37 122.25 122.13 122.01 121.88 121.76 121.64 121.52 121.40 121.28 121.16 121.03 120.91 120.79 120.67 120.55 120.43 120.31 120.19 120.07 119.95 119.83 119.71 119.59 119.47 119.35 119.23 119.11 119.00 118.88 118.76 118.64 118.52 118.40 118.28 118.17 118.05 117.93 117.81 117.69 117.58 117.46 117.34 117.22 117.11 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 116.99 116.87 116.76 116.64 116.52 116.41 116.29 116.17 116.06 115.94 115.83 115.71 115.60 115.48 115.36 115.25 115.13 115.02 114.90 114.79 114.67 114.56 114.45 114.33 114.22 114.10 113.99 113.88 113.76 113.65 113.53 113.42 113.31 113.19 113.08 112.97 112.86 112.74 112.63 112.52 112.41 112.29 112.18 112.07 111.96 111.85 111.73 111.62 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 111.51 111.40 111.29 111.18 111.07 110.95 110.84 110.73 110.62 110.51 110.40 110.29 110.18 110.07 109.96 109.85 109.74 109.63 109.52 109.41 109.30 109.19 109.08 108.98 108.87 108.76 108.65 108.54 108.43 108.32 108.22 108.11 108.00 107.89 107.78 107.68 107.57 107.46 107.35 107.25 107.14 107.03 106.93 106.82 106.71 106.61 106.50 106.39 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 106.29 106.18 106.07 105.97 105.86 105.76 105.65 105.55 105.44 105.33 105.23 105.12 105.02 104.91 104.81 104.71 104.60 104.50 104.39 104.29 104.18 104.08 103.98 103.87 103.77 103.66 103.56 103.46 103.35 103.25 103.15 103.04 102.94 102.84 102.74 102.63 102.53 102.43 102.33 102.22 102.12 102.02 101.92 101.82 101.71 101.61 101.51 101.41 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 101.31 101.21 101.11 101.00 100.90 100.80 100.70 100.60 100.50 100.40 100.30 100.20 100.10 100.00 35100.61 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 216.84 216.28 215.73 215.17 214.62 214.06 213.51 212.96 212.41 211.87 211.32 210.77 210.23 209.69 209.15 208.61 208.07 207.54 207.00 206.47 205.94 205.41 204.88 204.35 203.82 203.30 202.77 202.25 201.73 201.21 200.69 200.17 199.66 199.14 198.63 198.12 197.61 197.10 196.59 196.09 195.58 195.08 194.57 194.07 193.57 193.07 192.58 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 192.08 191.58 191.09 190.60 190.11 189.62 189.13 188.64 188.16 187.67 187.19 186.71 186.22 185.74 185.27 184.79 184.31 183.84 183.36 182.89 182.42 181.95 181.48 181.01 180.55 180.08 179.62 179.15 178.69 178.23 177.77 177.32 176.86 176.40 175.95 175.50 175.04 174.59 174.14 173.69 173.25 172.80 172.35 171.91 171.47 171.03 170.58 170.14 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 169.71 169.27 168.83 168.40 167.96 167.53 167.10 166.67 166.24 165.81 165.38 164.96 164.53 164.11 163.69 163.26 162.84 162.42 162.01 161.59 161.17 160.76 160.34 159.93 159.52 159.11 158.70 158.29 157.88 157.47 157.07 156.66 156.26 155.86 155.45 155.05 154.65 154.26 153.86 153.46 153.07 152.67 152.28 151.89 151.49 151.10 150.71 150.33 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 149.94 149.55 149.17 148.78 148.40 148.02 147.64 147.26 146.88 146.50 146.12 145.74 145.37 144.99 144.62 144.25 143.88 143.51 143.14 142.77 142.40 142.03 141.67 141.30 140.94 140.57 140.21 139.85 139.49 139.13 138.77 138.41 138.06 137.70 137.35 136.99 136.64 136.29 135.94 135.59 135.24 134.89 134.54 134.19 133.85 133.50 133.16 132.82 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 132.47 132.13 131.79 131.45 131.11 130.78 130.44 130.10 129.77 129.43 129.10 128.77 128.44 128.11 127.77 127.45 127.12 126.79 126.46 126.14 125.81 125.49 125.16 124.84 124.52 124.20 123.88 123.56 123.24 122.92 122.61 122.29 121.98 121.66 121.35 121.04 120.72 120.41 120.10 119.79 119.48 119.18 118.87 118.56 118.26 117.95 117.65 117.35 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 117.04 116.74 116.44 116.14 115.84 115.54 115.25 114.95 114.65 114.36 114.06 113.77 113.48 113.18 112.89 112.60 112.31 112.02 111.73 111.44 111.16 110.87 110.59 110.30 110.02 109.73 109.45 109.17 108.89 108.61 108.33 108.05 107.77 107.49 107.21 106.94 106.66 106.39 106.11 105.84 105.57 105.30 105.02 104.75 104.48 104.21 103.95 103.68 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 103.41 103.14 102.88 102.61 102.35 102.09 101.82 101.56 101.30 101.04 100.78 100.52 100.26 100.00 45446.16 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 708.93 704.32 699.74 695.18 690.66 686.17 681.70 677.26 672.86 668.48 664.13 659.81 655.51 651.25 647.01 642.80 638.62 634.46 630.33 626.23 622.16 618.11 614.08 610.09 606.12 602.17 598.26 594.36 590.49 586.65 582.83 579.04 575.27 571.53 567.81 564.12 560.45 556.80 553.17 549.58 546.00 542.45 538.92 535.41 531.93 528.46 525.02 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 521.61 518.21 514.84 511.49 508.16 504.86 501.57 498.31 495.06 491.84 488.64 485.46 482.30 479.16 476.05 472.95 469.87 466.81 463.78 460.76 457.76 454.78 451.82 448.88 445.96 443.06 440.17 437.31 434.46 431.64 428.83 426.04 423.27 420.51 417.77 415.06 412.36 409.67 407.01 404.36 401.73 399.11 396.51 393.93 391.37 388.82 386.29 383.78 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 381.28 378.80 376.34 373.89 371.45 369.04 366.64 364.25 361.88 359.53 357.19 354.86 352.55 350.26 347.98 345.71 343.46 341.23 339.01 336.80 334.61 332.43 330.27 328.12 325.99 323.86 321.76 319.66 317.58 315.52 313.46 311.42 309.40 307.38 305.38 303.40 301.42 299.46 297.51 295.58 293.65 291.74 289.84 287.96 286.08 284.22 282.37 280.53 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 278.71 276.89 275.09 273.30 271.52 269.76 268.00 266.26 264.53 262.80 261.09 259.39 257.71 256.03 254.36 252.71 251.06 249.43 247.81 246.19 244.59 243.00 241.42 239.85 238.29 236.74 235.20 233.67 232.15 230.63 229.13 227.64 226.16 224.69 223.23 221.78 220.33 218.90 217.47 216.06 214.65 213.26 211.87 210.49 209.12 207.76 206.41 205.06 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 203.73 202.40 201.09 199.78 198.48 197.19 195.90 194.63 193.36 192.10 190.85 189.61 188.38 187.15 185.93 184.72 183.52 182.33 181.14 179.96 178.79 177.63 176.47 175.32 174.18 173.05 171.92 170.80 169.69 168.59 167.49 166.40 165.32 164.24 163.17 162.11 161.06 160.01 158.97 157.93 156.91 155.88 154.87 153.86 152.86 151.87 150.88 149.90 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 148.92 147.95 146.99 146.03 145.08 144.14 143.20 142.27 141.34 140.42 139.51 138.60 137.70 136.80 135.91 135.03 134.15 133.28 132.41 131.55 130.69 129.84 129.00 128.16 127.32 126.49 125.67 124.85 124.04 123.23 122.43 121.64 120.84 120.06 119.28 118.50 117.73 116.96 116.20 115.45 114.69 113.95 113.21 112.47 111.74 111.01 110.29 109.57 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 108.86 108.15 107.45 106.75 106.05 105.36 104.68 103.99 103.32 102.65 101.98 101.31 100.66 100.00 93675.99 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 101.51 101.51 101.50 101.50 101.49 101.49 101.48 101.48 101.47 101.47 101.46 101.46 101.45 101.45 101.44 101.44 101.43 101.43 101.42 101.41 101.41 101.40 101.40 101.39 101.39 101.38 101.38 101.37 101.37 101.36 101.36 101.35 101.35 101.34 101.34 101.33 101.33 101.32 101.32 101.31 101.31 101.30 101.30 101.29 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 101.29 101.28 101.28 101.27 101.27 101.26 101.26 101.25 101.25 101.24 101.24 101.23 101.23 101.22 101.22 101.21 101.21 101.20 101.20 101.19 101.19 101.18 101.18 101.17 101.17 101.16 101.16 101.15 101.15 101.14 101.14 101.13 101.13 101.12 101.12 101.11 101.11 101.10 101.10 101.09 101.09 101.08 101.08 101.07 101.07 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 101.06 101.06 101.05 101.05 101.04 101.04 101.03 101.03 101.02 101.02 101.01 101.00 101.00 100.99 100.99 100.98 100.98 100.97 100.97 100.96 100.96 100.95 100.95 100.94 100.94 100.93 100.93 100.92 100.92 100.91 100.91 100.90 100.90 100.89 100.89 100.88 100.88 100.87 100.87 100.86 100.86 100.85 100.85 100.84 100.84 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 100.83 100.83 100.82 100.82 100.81 100.81 100.80 100.80 100.79 100.79 100.78 100.78 100.77 100.77 100.76 100.76 100.75 100.75 100.74 100.74 100.73 100.73 100.72 100.72 100.71 100.71 100.70 100.70 100.69 100.69 100.68 100.68 100.67 100.67 100.66 100.66 100.65 100.65 100.64 100.64 100.63 100.63 100.62 100.62 100.61 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 100.61 100.60 100.60 100.59 100.59 100.58 100.58 100.57 100.57 100.56 100.56 100.55 100.55 100.54 100.54 100.53 100.53 100.52 100.52 100.51 100.51 100.50 100.50 100.49 100.49 100.48 100.48 100.47 100.47 100.46 100.46 100.45 100.45 100.44 100.44 100.43 100.43 100.42 100.42 100.41 100.41 100.40 100.40 100.39 100.39 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 100.38 100.38 100.37 100.37 100.36 100.36 100.35 100.35 100.34 100.34 100.33 100.33 100.32 100.32 100.31 100.31 100.30 100.30 100.29 100.29 100.28 100.28 100.27 100.27 100.26 100.26 100.25 100.25 100.24 100.24 100.23 100.23 100.22 100.22 100.21 100.21 100.20 100.20 100.19 100.19 100.18 100.18 100.17 100.17 100.16 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 100.16 100.15 100.15 100.14 100.14 100.13 100.13 100.12 100.12 100.11 100.11 100.10 100.10 100.09 100.09 100.08 100.08 100.07 100.07 100.06 100.06 100.05 100.05 100.04 100.04 100.03 100.03 100.02 100.02 100.01 100.01 100.00 30326.88 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 134.97 134.83 134.70 134.56 134.43 134.29 134.16 134.02 133.89 133.76 133.62 133.49 133.36 133.22 133.09 132.96 132.82 132.69 132.56 132.43 132.29 132.16 132.03 131.90 131.77 131.63 131.50 131.37 131.24 131.11 130.98 130.85 130.72 130.59 130.46 130.33 130.20 130.07 129.94 129.81 129.68 129.55 129.42 129.29 129.16 129.03 128.90 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 128.77 128.64 128.51 128.39 128.26 128.13 128.00 127.87 127.75 127.62 127.49 127.36 127.24 127.11 126.98 126.86 126.73 126.60 126.48 126.35 126.22 126.10 125.97 125.85 125.72 125.59 125.47 125.34 125.22 125.09 124.97 124.84 124.72 124.59 124.47 124.35 124.22 124.10 123.97 123.85 123.73 123.60 123.48 123.35 123.23 123.11 122.99 122.86 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 122.74 122.62 122.49 122.37 122.25 122.13 122.01 121.88 121.76 121.64 121.52 121.40 121.28 121.16 121.03 120.91 120.79 120.67 120.55 120.43 120.31 120.19 120.07 119.95 119.83 119.71 119.59 119.47 119.35 119.23 119.11 119.00 118.88 118.76 118.64 118.52 118.40 118.28 118.17 118.05 117.93 117.81 117.69 117.58 117.46 117.34 117.22 117.11 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 116.99 116.87 116.76 116.64 116.52 116.41 116.29 116.17 116.06 115.94 115.83 115.71 115.60 115.48 115.36 115.25 115.13 115.02 114.90 114.79 114.67 114.56 114.45 114.33 114.22 114.10 113.99 113.88 113.76 113.65 113.53 113.42 113.31 113.19 113.08 112.97 112.86 112.74 112.63 112.52 112.41 112.29 112.18 112.07 111.96 111.85 111.73 111.62 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 111.51 111.40 111.29 111.18 111.07 110.95 110.84 110.73 110.62 110.51 110.40 110.29 110.18 110.07 109.96 109.85 109.74 109.63 109.52 109.41 109.30 109.19 109.08 108.98 108.87 108.76 108.65 108.54 108.43 108.32 108.22 108.11 108.00 107.89 107.78 107.68 107.57 107.46 107.35 107.25 107.14 107.03 106.93 106.82 106.71 106.61 106.50 106.39 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 106.29 106.18 106.07 105.97 105.86 105.76 105.65 105.55 105.44 105.33 105.23 105.12 105.02 104.91 104.81 104.71 104.60 104.50 104.39 104.29 104.18 104.08 103.98 103.87 103.77 103.66 103.56 103.46 103.35 103.25 103.15 103.04 102.94 102.84 102.74 102.63 102.53 102.43 102.33 102.22 102.12 102.02 101.92 101.82 101.71 101.61 101.51 101.41 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 101.31 101.21 101.11 101.00 100.90 100.80 100.70 100.60 100.50 100.40 100.30 100.20 100.10 100.00 35100.61 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 216.84 216.28 215.73 215.17 214.62 214.06 213.51 212.96 212.41 211.87 211.32 210.77 210.23 209.69 209.15 208.61 208.07 207.54 207.00 206.47 205.94 205.41 204.88 204.35 203.82 203.30 202.77 202.25 201.73 201.21 200.69 200.17 199.66 199.14 198.63 198.12 197.61 197.10 196.59 196.09 195.58 195.08 194.57 194.07 193.57 193.07 192.58 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 192.08 191.58 191.09 190.60 190.11 189.62 189.13 188.64 188.16 187.67 187.19 186.71 186.22 185.74 185.27 184.79 184.31 183.84 183.36 182.89 182.42 181.95 181.48 181.01 180.55 180.08 179.62 179.15 178.69 178.23 177.77 177.32 176.86 176.40 175.95 175.50 175.04 174.59 174.14 173.69 173.25 172.80 172.35 171.91 171.47 171.03 170.58 170.14 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 169.71 169.27 168.83 168.40 167.96 167.53 167.10 166.67 166.24 165.81 165.38 164.96 164.53 164.11 163.69 163.26 162.84 162.42 162.01 161.59 161.17 160.76 160.34 159.93 159.52 159.11 158.70 158.29 157.88 157.47 157.07 156.66 156.26 155.86 155.45 155.05 154.65 154.26 153.86 153.46 153.07 152.67 152.28 151.89 151.49 151.10 150.71 150.33 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 149.94 149.55 149.17 148.78 148.40 148.02 147.64 147.26 146.88 146.50 146.12 145.74 145.37 144.99 144.62 144.25 143.88 143.51 143.14 142.77 142.40 142.03 141.67 141.30 140.94 140.57 140.21 139.85 139.49 139.13 138.77 138.41 138.06 137.70 137.35 136.99 136.64 136.29 135.94 135.59 135.24 134.89 134.54 134.19 133.85 133.50 133.16 132.82 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 132.47 132.13 131.79 131.45 131.11 130.78 130.44 130.10 129.77 129.43 129.10 128.77 128.44 128.11 127.77 127.45 127.12 126.79 126.46 126.14 125.81 125.49 125.16 124.84 124.52 124.20 123.88 123.56 123.24 122.92 122.61 122.29 121.98 121.66 121.35 121.04 120.72 120.41 120.10 119.79 119.48 119.18 118.87 118.56 118.26 117.95 117.65 117.35 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 117.04 116.74 116.44 116.14 115.84 115.54 115.25 114.95 114.65 114.36 114.06 113.77 113.48 113.18 112.89 112.60 112.31 112.02 111.73 111.44 111.16 110.87 110.59 110.30 110.02 109.73 109.45 109.17 108.89 108.61 108.33 108.05 107.77 107.49 107.21 106.94 106.66 106.39 106.11 105.84 105.57 105.30 105.02 104.75 104.48 104.21 103.95 103.68 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 103.41 103.14 102.88 102.61 102.35 102.09 101.82 101.56 101.30 101.04 100.78 100.52 100.26 100.00 45446.16 n Fn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 708.93 704.32 699.74 695.18 690.66 686.17 681.70 677.26 672.86 668.48 664.13 659.81 655.51 651.25 647.01 642.80 638.62 634.46 630.33 626.23 622.16 618.11 614.08 610.09 606.12 602.17 598.26 594.36 590.49 586.65 582.83 579.04 575.27 571.53 567.81 564.12 560.45 556.80 553.17 549.58 546.00 542.45 538.92 535.41 531.93 528.46 525.02 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 521.61 518.21 514.84 511.49 508.16 504.86 501.57 498.31 495.06 491.84 488.64 485.46 482.30 479.16 476.05 472.95 469.87 466.81 463.78 460.76 457.76 454.78 451.82 448.88 445.96 443.06 440.17 437.31 434.46 431.64 428.83 426.04 423.27 420.51 417.77 415.06 412.36 409.67 407.01 404.36 401.73 399.11 396.51 393.93 391.37 388.82 386.29 383.78 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 381.28 378.80 376.34 373.89 371.45 369.04 366.64 364.25 361.88 359.53 357.19 354.86 352.55 350.26 347.98 345.71 343.46 341.23 339.01 336.80 334.61 332.43 330.27 328.12 325.99 323.86 321.76 319.66 317.58 315.52 313.46 311.42 309.40 307.38 305.38 303.40 301.42 299.46 297.51 295.58 293.65 291.74 289.84 287.96 286.08 284.22 282.37 280.53 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 278.71 276.89 275.09 273.30 271.52 269.76 268.00 266.26 264.53 262.80 261.09 259.39 257.71 256.03 254.36 252.71 251.06 249.43 247.81 246.19 244.59 243.00 241.42 239.85 238.29 236.74 235.20 233.67 232.15 230.63 229.13 227.64 226.16 224.69 223.23 221.78 220.33 218.90 217.47 216.06 214.65 213.26 211.87 210.49 209.12 207.76 206.41 205.06 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 203.73 202.40 201.09 199.78 198.48 197.19 195.90 194.63 193.36 192.10 190.85 189.61 188.38 187.15 185.93 184.72 183.52 182.33 181.14 179.96 178.79 177.63 176.47 175.32 174.18 173.05 171.92 170.80 169.69 168.59 167.49 166.40 165.32 164.24 163.17 162.11 161.06 160.01 158.97 157.93 156.91 155.88 154.87 153.86 152.86 151.87 150.88 149.90 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 148.92 147.95 146.99 146.03 145.08 144.14 143.20 142.27 141.34 140.42 139.51 138.60 137.70 136.80 135.91 135.03 134.15 133.28 132.41 131.55 130.69 129.84 129.00 128.16 127.32 126.49 125.67 124.85 124.04 123.23 122.43 121.64 120.84 120.06 119.28 118.50 117.73 116.96 116.20 115.45 114.69 113.95 113.21 112.47 111.74 111.01 110.29 109.57 287 288 289 290 291 292 293 294 295 296 297 298 299 300 SUM = 108.86 108.15 107.45 106.75 106.05 105.36 104.68 103.99 103.32 102.65 101.98 101.31 100.66 100.00 93675.99
Step by Step Solution
There are 3 Steps involved in it
Step: 1
Get Instant Access to Expert-Tailored Solutions
See step-by-step solutions with expert insights and AI powered tools for academic success
Step: 2
Step: 3
Ace Your Homework with AI
Get the answers you need in no time with our AI-driven, step-by-step assistance
Get Started