All Matches
Solution Library
Expert Answer
Textbooks
Search Textbook questions, tutors and Books
Oops, something went wrong!
Change your search query and then try again
Toggle navigation
FREE Trial
S
Books
FREE
Tutors
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Hire a Tutor
AI Study Help
New
Search
Search
Sign In
Register
study help
computer science
systems analysis and design 12th
Questions and Answers of
Systems Analysis And Design 12th
Sketch a simple source-follower amplifier circuit and discuss the general ac circuit characteristics (voltage gain and output resistance).
Sketch a simple common-gate amplifier circuit and discuss the general ac circuit characteristics (voltage gain and output resistance).
Discuss the general conditions under which a source-follower or a common-gate amplifier would be used.
Compare the ac circuit characteristics of the common-source, source-follower, and common-gate circuits.
State the advantage of using transistors in place of resistors in MOSFET integrated circuits.
State at least two reasons why a multistage amplifier circuit would be required in a design compared to using a single-stage circuit.
An NMOS transistor has parameters \(V_{T N}=0.4 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0.02 \mathrm{~V}^{-1}\).(a) (i) Determine the width-to-length ratio
A PMOS transistor has parameters \(V_{T P}=-0.6 \mathrm{~V}, k_{p}^{\prime}=40 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0.015 \mathrm{~V}^{-1}\).(a) (i) Determine the width-to-length ratio
An NMOS transistor is biased in the saturation region at a constant \(V_{G S}\). The drain current is \(I_{D}=3 \mathrm{~mA}\) at \(V_{D S}=5 \mathrm{~V}\) and \(I_{D}=3.4 \mathrm{~mA}\) at \(V_{D
The minimum value of small-signal resistance of a PMOS transistor is to be \(r_{o}=100 \mathrm{k} \Omega\). If \(\lambda=0.012 \mathrm{~V}^{-1}\), calculate the maximum allowed value of \(I_{D}\).
An n-channel MOSFET is biased in the saturation region at a constant \(V_{G S}\). (a) The drain current is \(I_{D}=0.250 \mathrm{~mA}\) at \(V_{D S}=1.5 \mathrm{~V}\) and \(I_{D}=0.258 \mathrm{~mA}\)
The value of \(\lambda\) for a MOSFET is \(0.02 \mathrm{~V}^{-1}\). (a) What is the value of \(r_{o}\) at (i) \(I_{D}=50 \mu \mathrm{A}\) and at (ii) \(I_{D}=500 \mu \mathrm{A}\) ? (b) If \(V_{D S}\)
A MOSFET with \(\lambda=0.01 \mathrm{~V}^{-1}\) is biased in the saturation region at \(I_{D}=\) \(0.5 \mathrm{~mA}\). If \(V_{G S}\) and \(V_{D S}\) remain constant, what are the new values of
The parameters of the circuit in Figure 4.1 are \(V_{D D}=3.3 \mathrm{~V}\) and \(R_{D}=5 \mathrm{k} \Omega\). The transistor parameters are \(k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}, W /
The circuit shown in Figure 4.1 has parameters \(V_{D D}=2.5 \mathrm{~V}\) and \(R_{D}=10 \mathrm{k} \Omega\). The transistor is biased at \(I_{D Q}=0.12 \mathrm{~mA}\). The transistor parameters are
For the circuit shown in Figure 4.1, the transistor parameters are \(V_{T N}=0.6 \mathrm{~V}, k_{n}^{\prime}=80 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0.015 \mathrm{~V}^{-1}\). Let \(V_{D
In our analyses, we assumed the small-signal condition given by Equation (4.4). Now consider Equation (4.3(b)) and let \(v_{g s}=V_{g s} \sin \omega t\). Show that the ratio of the signal at
Using the results of Problem 4.11, find the peak amplitude \(V_{g s}\) that produces a second-harmonic distortion of 1 percent if \(V_{G S}=3 \mathrm{~V}\) and \(V_{T N}=1 \mathrm{~V}\).Data From
Consider the circuit in Figure 4.14 in the text. The circuit parameters are \(V_{D D}=3.3 \mathrm{~V}, R_{D}=8 \mathrm{k} \Omega, R_{1}=240 \mathrm{k} \Omega, R_{2}=60 \mathrm{k} \Omega\), and \(R_{S
A common-source amplifier, such as shown in Figure 4.14 in the text, has parameters \(r_{o}=100 \mathrm{k} \Omega\) and \(R_{D}=5 \mathrm{k} \Omega\). Determine the transconductance of the transistor
For the NMOS common-source amplifier in Figure P4.15, the transistor parameters are: \(V_{T N}=0.8 \mathrm{~V}, K_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). The circuit parameters are
The parameters of the circuit shown in Figure P4.15 are \(V_{D D}=12 \mathrm{~V}\), \(R_{S}=0.5 \mathrm{k} \Omega, R_{i n}=250 \mathrm{k} \Omega\), and \(R_{L}=10 \mathrm{k} \Omega\). The transistor
Repeat Problem 4.15 if the source resistor is bypassed by a source capacitor \(C_{S}\).Data From Problem 4.15:-For the NMOS common-source amplifier in Figure P4.15, the transistor parameters are:
The ac equivalent circuit of a common-source amplifier is shown in Figure P4.18. The small-signal parameters of the transistor are \(g_{m}=2 \mathrm{~mA} / \mathrm{V}\) and \(r_{o}=\infty\). (a) The
Consider the ac equivalent circuit shown in Figure P4.18. Assume \(r_{o}=\infty\) for the transistor. The small-signal voltage gain is \(A_{v}=-8\) for the case when \(R_{S}=1 \mathrm{k} \Omega\).
The transistor in the common-source amplifier in Figure P4.20 has parameters \(V_{T N}=0.8 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}, W / L=50\), and \(\lambda=0.02
The parameters of the MOSFET in the circuit shown in Figure P4.21 are \(V_{T N}=0.8 \mathrm{~V}, K_{n}=0.85 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0.02 \mathrm{~V}^{-1}\). (a) Determine
For the common-source amplifier in Figure P4.22, the transistor parameters are \(V_{T N}=-0.8 \mathrm{~V}, K_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). The circuit parameters are
The transistor in the common-source circuit in Figure P4.22 has the same parameters as given in Problem 4.22. The circuit parameters are \(V_{D D}=5 \mathrm{~V}\) and \(R_{D}=R_{L}=2 \mathrm{k}
Consider the PMOS common-source circuit in Figure P4.24 with transistor parameters \(V_{T P}=-2 \mathrm{~V}\) and \(\lambda=0\), and circuit parameters \(R_{D}=R_{L}=\) \(10 \mathrm{k} \Omega\).(a)
For the common-source circuit in Figure P4.24, the bias voltages are changed to \(V^{+}=3 \mathrm{~V}\) and \(V^{-}=-3 \mathrm{~V}\). The PMOS transistor parameters are: \(V_{T P}=-0.5 \mathrm{~V},
Design the common-source circuit in Figure P4.26 using an n-channel MOSFET with \(\lambda=0\). The quiescent values are to be \(I_{D Q}=6 \mathrm{~mA}\), \(V_{G S Q}=2.8 \mathrm{~V}\), and \(V_{D S
For the common-source amplifier shown in Figure P4.27, the transistor parameters are \(V_{T P}=-1.2 \mathrm{~V}, K_{p}=2 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0.03 \mathrm{~V}^{-1}\). The
For the circuit shown in Figure P4.28, the transistor parameters are: \(V_{T P}=0.8 \mathrm{~V}, K_{p}=0.25 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). (a) Design the circuit such that \(I_{D
Design a common-source amplifier, such as that in Figure P4.29, to achieve a small-signal voltage gain of at least \(A_{v}=v_{o} / v_{i}=-10\) for \(R_{L}=20 \mathrm{k} \Omega\) and \(R_{\text {in
The small-signal parameters of an enhancement-mode MOSFET source follower are \(g_{m}=5 \mathrm{~mA} / \mathrm{V}\) and \(r_{o}=100 \mathrm{k} \Omega\). (a) Determine the no-load small-signal voltage
The open-circuit \(\left(R_{L}=\infty\right)\) voltage gain of the ac equivalent sourcefollower circuit shown in Figure P4.31 is \(A_{v}=0.98\). When \(R_{L}\) is set to \(1 \mathrm{k} \Omega\), the
Consider the source-follower circuit in Figure P4.31. The small-signal parameters of the transistor are \(g_{m}=2 \mathrm{~mA} / \mathrm{V}\) and \(r_{o}=25 \mathrm{k} \Omega\). (a) Determine the
The source follower amplifier in Figure P4.33 is biased at \(V^{+}=1.5 \mathrm{~V}\) and \(V^{-}=-1.5 \mathrm{~V}\). The transistor parameters are \(V_{T N}=0.4 \mathrm{~V}\), \(k_{n}^{\prime}=100
Consider the circuit in Figure P4.34. The transistor parameters are \(V_{T N}=0.6 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0\). The circuit is to be designed
The quiescent power dissipation in the circuit in Figure P4.35 is to be limited to \(2.5 \mathrm{~mW}\). The parameters of the transistor are \(V_{T N}=0.6 \mathrm{~V}\), \(k_{n}^{\prime}=100 \mu
The parameters of the circuit in Figure P4.36 are \(R_{S}=4 \mathrm{k} \Omega, R_{1}=850 \mathrm{k} \Omega\), \(R_{2}=350 \mathrm{k} \Omega\), and \(R_{L}=4 \mathrm{k} \Omega\). The transistor
Consider the source follower circuit in Figure P4.37 with transistor parameters \(V_{T N}=0.8 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}, W / L=20\), and \(\lambda=0.02
For the source-follower circuit shown in Figure P4.37, the transistor parameters are: \(V_{T N}=1 \mathrm{~V}, k_{n}^{\prime}=60 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0\). The small-signal
In the source-follower circuit in Figure P4.39 with a depletion NMOS transistor, the device parameters are: \(V_{T N}=-2 \mathrm{~V}, K_{n}=5 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0.01
For the circuit in Figure P4.39, \(R_{S}=1 \mathrm{k} \Omega\) and the quiescent drain current is \(I_{D Q}=5 \mathrm{~mA}\). The transistor parameters are \(V_{T N}=-2 \mathrm{~V}\),
For the source-follower circuit in Figure P4.39, the transistor parameters are: \(V_{T N}=-2 \mathrm{~V}, K_{n}=4 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). Design the circuit such that
The current source in the source-follower circuit in Figure P4.42 is \(I_{Q}=10 \mathrm{~mA}\) and the transistor parameters are \(V_{T P}=-2 \mathrm{~V}, K_{p}=5 \mathrm{~mA} / \mathrm{V}^{2}\), and
Consider the source-follower circuit shown in Figure P4.43. The most negative output signal voltage occurs when the transistor just cuts off. Show that this output voltage \(v_{o}(\mathrm{~min})\) is
The transistor in the circuit in Figure P4.44 has parameters \(V_{T N}=0.4 \mathrm{~V}\), \(K_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). The circuit parameters are \(V_{D D}=3
Figure P4.45 is the ac equivalent circuit of a common-gate amplifier. The transistor parameters are \(V_{T N}=0.4 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0\).
The transistor in the common-gate circuit in Figure P4.46 has the same parameters that are given in Problem 4.45. The output resistance \(R_{o}\) is tobe \(500 \Omega\) and the drain-to-source
The small-signal parameters of the NMOS transistor in the ac equivalent common-gate circuit shown in Figure P4.47 are \(V_{T N}=0.4 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\),
For the common-gate circuit in Figure P4.48, the NMOS transistor parameters are: \(V_{T N}=1 \mathrm{~V}, K_{n}=3 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). (a) Determine \(I_{D Q}\) and
Consider the PMOS common-gate circuit in Figure P4.49. The transistor parameters are: \(V_{T P}=-1 \mathrm{~V}, K_{p}=0.5 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). (a) Determine \(R_{S}\)
The transistor parameters of the NMOS device in the common-gate amplifier in Figure P4.50 are \(V_{T N}=0.4 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0\). (a)
The parameters of the circuit shown in Figure 4.32 are \(V^{+}=3.3 \mathrm{~V}\), \(V^{-}=-3.3 \mathrm{~V}, R_{G}=50 \mathrm{k} \Omega, R_{L}=4 \mathrm{k} \Omega, R_{\mathrm{Si}}=0\), and \(I_{Q}=2
For the common-gate amplifier in Figure 4.35 in the text, the PMOS transistor parameters are \(V_{T P}=-0.8 \mathrm{~V}, K_{p}=2.5 \mathrm{~mA} / \mathrm{V}^{2}\), and \(\lambda=0\). The circuit
Consider the NMOS amplifier with saturated load in Figure 4.39(a). The transistor parameters are \(V_{T N D}=V_{T N L}=0.6 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2},
For the NMOS amplifier with depletion load in Figure 4.43(a), the transistor parameters are \(V_{T N D}=0.6 \mathrm{~V}, V_{T N L}=-0.8 \mathrm{~V}, K_{n D}=1.2 \mathrm{~mA} / \mathrm{V}^{2}\),
Consider a saturated load device in which the gate and drain of an enhancement-mode MOSFET are connected together. The transistor drain current becomes zero when \(V_{D S}=0.6 \mathrm{~V}\). (a) At
A source-follower circuit with a saturated load is shown in Figure P4.57. The transistor parameters are \(V_{T N D}=1 \mathrm{~V}, K_{n D}=1 \mathrm{~mA} / \mathrm{V}^{2}\) for \(M_{D}\), and \(V_{T
For the source-follower circuit with a saturated load as shown in Figure P4.57, assume the same transistor parameters as given in Problem 4.57. (a) Determine the small-signal voltage gain if
The transistor parameters for the common-source circuit in Figure P4.59 are \(V_{T N D}=0.4 \mathrm{~V}, \quad V_{T P L}=-0.4 \mathrm{~V}, \quad(W / L)_{L}=50, \quad \lambda_{D}=0.02
Consider the circuit in Figure P4.60. The transistor parameters are \(V_{T P D}=-0.6 \mathrm{~V}, \quad V_{T N L}=0.4 \mathrm{~V}, \quad k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}, \quad
The ac equivalent circuit of a CMOS common-source amplifier is shown in Figure P4.61. The transistor parameters for \(M_{1}\) are \(V_{T N}=0.5 \mathrm{~V}, k_{n}^{\prime}=\) \(85 \mu \mathrm{A} /
Consider the ac equivalent circuit of a CMOS common-source amplifier shown in Figure P4.62. The parameters of the NMOS and PMOS transistors are the same as given in Problem 4.61. Determine the
The parameters of the transistors in the circuit in Figure \(\mathrm{P} 4.63\) are \(V_{T N D}=\) \(V_{T N L}=0.4 \mathrm{~V}, K_{n D}=2 \mathrm{~mA} / \mathrm{V}^{2}, K_{n L}=0.5 \mathrm{~mA} /
Consider the source-follower circuit in Figure P4.64. The transistor parameters are \(V_{T P}=-0.4 \mathrm{~V}, k_{p}^{\prime}=40 \mu \mathrm{A} / \mathrm{V}^{2},(W / L)_{L}=5,(W / L)_{D}=50\), and
Figure P4.65 shows a common-gate amplifier. The transistor parameters are \(V_{T N}=0.6 \mathrm{~V}, V_{T P}=-0.6 \mathrm{~V}, K_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}, K_{p}=0.5 \mathrm{~mA} /
The ac equivalent circuit of a CMOS common-gate circuit is shown in Figure P4.66. The parameters of the NMOS and PMOS transistors are the same as given in Problem 4.61. Determine the (a) small-signal
The circuit in Figure P4.67 is a simplified ac equivalent circuit of a foldedcascode amplifier. The transistor parameters are \(\left|V_{T N}\right|=\left|V_{T P}\right|=0.5 \mathrm{~V}\),
The transistor parameters in the circuit in Figure P4.68 are \(V_{T N 1}=0.6 \mathrm{~V}\), \(V_{T P 2}=-0.6 \mathrm{~V}, K_{n 1}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, K_{p 2}=1.0 \mathrm{~mA} /
The transistor parameters in the circuit in Figure P4.68 are the same as those given in Problem 4.68. The circuit parameters are \(V_{D D}=3.3 \mathrm{~V}\), \(R_{S 1}=1 \mathrm{k} \Omega\), and
Consider the circuit shown in Figure P4.70. The transistor parameters are \(V_{T P 1}=-0.4 \mathrm{~V}, \quad V_{T N 2}=0.4 \mathrm{~V}, \quad(W / L)_{1}=20, \quad(W / L)_{2}=80\),
For the circuit in Figure P4.71, the transistor parameters are: \(K_{n 1}=\) \(K_{n 2}=4 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N 1}=V_{T N 2}=2 \mathrm{~V}\), and \(\lambda_{1}=\lambda_{2}=0\). (a)
For the cascode circuit in Figure 4.51 in the text, the transistor parameters are: \(V_{T N 1}=V_{T N 2}=1 \mathrm{~V}, K_{n 1}=K_{n 2}=2 \mathrm{~mA} / \mathrm{V}^{2}\), and
The supply voltages to the cascode circuit in Figure 4.51 in the text are changed to \(V^{+}=10 \mathrm{~V}\) and \(V^{-}=-10 \mathrm{~V}\). The transistor parameters are: \(K_{n 1}=K_{n 2}=4
Consider the JFET amplifier in Figure 4.53 with transistor parameters \(I_{D S S}=6 \mathrm{~mA}, V_{P}=-3 \mathrm{~V}\), and \(\lambda=0.01 \mathrm{~V}^{-1}\). Let \(V_{D D}=10 \mathrm{~V}\). (a)
For the JFET amplifier in Figure P4.75, the transistor parameters are: \(I_{D S S}=2 \mathrm{~mA}, V_{P}=-2 \mathrm{~V}\), and \(\lambda=0\). Determine \(g_{m}, A_{v}=v_{o} / v_{i}\), and
The parameters of the transistor in the JFET common-source amplifier shown in Figure P4.76 are: \(I_{D S S}=8 \mathrm{~mA}, V_{P}=-4.2 \mathrm{~V}\), and \(\lambda=0\). Let \(V_{D D}=20 \mathrm{~V}\)
Consider the source-follower JFET amplifier in Figure P4.77 with transistor parameters \(I_{D S S}=10 \mathrm{~mA}, V_{P}=-5 \mathrm{~V}\), and \(\lambda=0.01 \mathrm{~V}^{-1}\). Let \(V_{D D}=12
For the p-channel JFET source-follower circuit in Figure P4.78, the transistor parameters are: \(I_{D S S}=2 \mathrm{~mA}, V_{P}=+1.75 \mathrm{~V}\), and \(\lambda=0\). (a) Determine \(I_{D Q}\) and
The p-channel JFET common-source amplifier in Figure P4.79 has transistor parameters \(I_{D S S}=8 \mathrm{~mA}, V_{P}=4 \mathrm{~V}\), and \(\lambda=0\). Design the circuit such that \(I_{D Q}=4
Consider the common-source circuit described in Example 4.5. (a) Using a computer simulation, verify the results obtained in Example 4.5. (b) Determine the change in the results when the body effect
Using a computer simulation, verify the results of Example 4.7 for the source-follower amplifier.Data From Example 4.7:- Calculate the small-signal voltage gain of the source-follower circuit in
Using a computer simulation, verify the results of Example 4.10 for the common-gate amplifier.Data From Example 4.10:- For the common-gate circuit, determine the output voltage for a given input
Using a computer simulation, verify the results of Example 4.17 for the cascode amplifier.Data From Example 4.17:- Determine the small-signal voltage gain of a cascode circuit. Consider the cascode
A discrete common-source circuit with the configuration shown in Figure 4.17 is to be designed to provide a voltage gain of 18 and a symmetrical output voltage swing. The bias voltage is \(V_{D
Consider the common-gate amplifier shown in Figure 4.35. The power supply voltages are \(\pm 5 \mathrm{~V}\), the output resistance of the signal source is \(500 \Omega\), and the input resistance of
A source-follower amplifier with the configuration shown in Figure 4.31 is to be designed. The power supplies are to be \(\pm 12 \mathrm{~V}\). The transistor parameters are \(V_{T N}=1.2
Consider the multitransistor circuit in Figure 4.49. Assume transistor parameters of \(V_{T N}=0.6 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{A} / \mathrm{V}^{2}\), and \(\lambda=0\). Design the
Describe an intrinsic semiconductor material. What is meant by the intrinsic carrier concentration?
Describe the concept of an electron and a hole as charge carriers in the semiconductor material.
Describe an extrinsic semiconductor material. What is the electron concentration in terms of the donor impurity concentration? What is the hole concentration in terms of the acceptor impurity
Describe the concepts of drift current and diffusion current in a semiconductor material.
How is a pn junction formed? What is meant by a built-in potential barrier, and how is it formed?
How is a junction capacitance created in a reverse-biased pn junction diode?
Write the ideal diode current-voltage relationship. Describe the meaning of \(I_{S}\) and \(V_{T}\).
Describe the iteration method of analysis and when it must be used to analyze a diode circuit.
Showing 1400 - 1500
of 4724
First
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Last